Ling Tao, Da Pengfei, Zheng Xueli, Ge Binghui, Hu Zhenpeng, Wu Mengying, Du Xi-Wen, Hu Wen-Bin, Jaroniec Mietek, Qiao Shi-Zhang
Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
Sci Adv. 2018 Oct 19;4(10):eaau6261. doi: 10.1126/sciadv.aau6261. eCollection 2018 Oct.
Atomic-level structure engineering can substantially change the chemical and physical properties of materials. However, the effects of structure engineering on the capacitive properties of electrode materials at the atomic scale are poorly understood. Fast transport of ions and electrons to all active sites of electrode materials remains a grand challenge. Here, we report the radical modification of the pseudocapacitive properties of an oxide material, Zn Co O, via atomic-level structure engineering, which changes its dominant charge storage mechanism from surface redox reactions to ion intercalation into bulk material. Fast ion and electron transports are simultaneously achieved in this mixed oxide, increasing its capacity almost to the theoretical limit. The resultant Zn Co O exhibits high-rate performance with capacitance up to 450 F g at a scan rate of 1 V s, competing with the state-of-the-art transition metal carbides. A symmetric device assembled with Zn Co O achieves an energy density of 67.3 watt-hour kg at a power density of 1.67 kW kg, which is the highest value ever reported for symmetric pseudocapacitors. Our finding suggests that the rational design of electrode materials at the atomic scale opens a new opportunity for achieving high power/energy density electrode materials for advanced energy storage devices.
原子级结构工程能够显著改变材料的化学和物理性质。然而,人们对原子尺度下结构工程对电极材料电容性能的影响了解甚少。离子和电子向电极材料所有活性位点的快速传输仍然是一个巨大的挑战。在此,我们报道了通过原子级结构工程对氧化物材料ZnCoO的赝电容性能进行的根本性改性,这使其主要的电荷存储机制从表面氧化还原反应转变为离子嵌入块状材料。在这种混合氧化物中同时实现了快速的离子和电子传输,使其容量几乎达到理论极限。所得的ZnCoO在1 V s的扫描速率下表现出高达450 F g的高倍率性能,可与最先进的过渡金属碳化物相媲美。用ZnCoO组装的对称器件在1.67 kW kg的功率密度下实现了67.3瓦时/千克的能量密度,这是对称赝电容器报道的最高值。我们的发现表明,在原子尺度上合理设计电极材料为实现用于先进储能装置的高功率/能量密度电极材料开辟了新的机遇。