Rivas-Villar David, Hervella Álvaro S, Rouco José, Novo Jorge
Centro de investigacion CITIC, Universidade da Coruña, 15 071, A Coruña, Spain; Grupo VARPA, Instituto de Investigacion Biomédica de A Coruña (INIBIC), Universidade da Coruña, 15 006, A Coruña, Spain.
Comput Biol Med. 2022 Jan;140:105101. doi: 10.1016/j.compbiomed.2021.105101. Epub 2021 Dec 3.
Medical imaging, and particularly retinal imaging, allows to accurately diagnose many eye pathologies as well as some systemic diseases such as hypertension or diabetes. Registering these images is crucial to correctly compare key structures, not only within patients, but also to contrast data with a model or among a population. Currently, this field is dominated by complex classical methods because the novel deep learning methods cannot compete yet in terms of results and commonly used methods are difficult to adapt to the retinal domain. In this work, we propose a novel method to register color fundus images based on previous works which employed classical approaches to detect domain-specific landmarks. Instead, we propose to use deep learning methods for the detection of these highly-specific domain-related landmarks. Our method uses a neural network to detect the bifurcations and crossovers of the retinal blood vessels, whose arrangement and location are unique to each eye and person. This proposal is the first deep learning feature-based registration method in fundus imaging. These keypoints are matched using a method based on RANSAC (Random Sample Consensus) without the requirement to calculate complex descriptors. Our method was tested using the public FIRE dataset, although the landmark detection network was trained using the DRIVE dataset. Our method provides accurate results, a registration score of 0.657 for the whole FIRE dataset (0.908 for category S, 0.293 for category P and 0.660 for category A). Therefore, our proposal can compete with complex classical methods and beat the deep learning methods in the state of the art.
医学成像,尤其是视网膜成像,能够准确诊断多种眼部疾病以及一些全身性疾病,如高血压或糖尿病。对这些图像进行配准对于正确比较关键结构至关重要,不仅可以在患者自身内部进行比较,还能将数据与模型进行对比或在人群中进行对比。目前,该领域主要由复杂的经典方法主导,因为新颖的深度学习方法在结果方面尚无法与之竞争,且常用方法难以适应视网膜领域。在这项工作中,我们基于以往采用经典方法检测特定领域地标的工作,提出了一种用于配准彩色眼底图像的新方法。相反,我们建议使用深度学习方法来检测这些高度特定的领域相关地标。我们的方法使用神经网络来检测视网膜血管的分叉和交叉点,其排列和位置对于每只眼睛和每个人都是独特的。该提议是眼底成像中第一种基于深度学习特征的配准方法。这些关键点使用基于随机抽样一致性(RANSAC)的方法进行匹配,无需计算复杂的描述符。我们的方法使用公共的FIRE数据集进行测试,尽管地标检测网络是使用DRIVE数据集进行训练的。我们的方法提供了准确的结果,整个FIRE数据集的配准分数为0.657(类别S为0.908,类别P为0.293,类别A为0.660)。因此,我们的提议可以与复杂的经典方法竞争,并在现有技术中击败深度学习方法。