Suppr超能文献

结合特征对应与参数化倒角对齐:超广角视网膜图像的混合两阶段配准

Combining Feature Correspondence With Parametric Chamfer Alignment: Hybrid Two-Stage Registration for Ultra-Widefield Retinal Images.

作者信息

Ding Li, Kang Tony D, Kuriyan Ajay E, Ramchandran Rajeev S, Wykoff Charles C, Sharma Gaurav

出版信息

IEEE Trans Biomed Eng. 2023 Feb;70(2):523-532. doi: 10.1109/TBME.2022.3196458. Epub 2023 Jan 19.

Abstract

We propose a novel hybrid framework for registering retinal images in the presence of extreme geometric distortions that are commonly encountered in ultra-widefield (UWF) fluorescein angiography. Our approach consists of two stages: a feature-based global registration and a vessel-based local refinement. For the global registration, we introduce a modified RANSAC (random sample and consensus) that jointly identifies robust matches between feature keypoints in reference and target images and estimates a polynomial geometric transformation consistent with the identified correspondences. Our RANSAC modification particularly improves feature point matching and the registration in peripheral regions that are most severely impacted by the geometric distortions. The second local refinement stage is formulated in our framework as a parametric chamfer alignment for vessel maps obtained using a deep neural network. Because the complete vessel maps contribute to the chamfer alignment, this approach not only improves registration accuracy but also aligns with clinical practice, where vessels are typically a key focus of examinations. We validate the effectiveness of the proposed framework on a new UWF fluorescein angiography (FA) dataset and on the existing narrow-field FIRE (fundus image registration) dataset and demonstrate that it significantly outperforms prior retinal image registration methods in accuracy. The proposed approach enhances the utility of large sets of longitudinal UWF images by enabling: (a) automatic computation of vessel change metrics such as vessel density and caliber, and (b) standardized and co-registered examination that can better highlight changes of clinical interest to physicians.

摘要

我们提出了一种新颖的混合框架,用于在超广角(UWF)荧光血管造影中常见的极端几何畸变情况下对视网膜图像进行配准。我们的方法包括两个阶段:基于特征的全局配准和基于血管的局部细化。对于全局配准,我们引入了一种改进的RANSAC(随机抽样和一致性)方法,该方法联合识别参考图像和目标图像中特征关键点之间的稳健匹配,并估计与所识别的对应关系一致的多项式几何变换。我们对RANSAC的改进特别提高了特征点匹配以及在受几何畸变影响最严重的周边区域的配准效果。第二个局部细化阶段在我们的框架中被制定为对使用深度神经网络获得的血管图进行参数化倒角对齐。由于完整的血管图有助于倒角对齐,这种方法不仅提高了配准精度,而且与临床实践相一致,在临床实践中血管通常是检查的关键重点。我们在一个新的UWF荧光血管造影(FA)数据集和现有的窄视野FIRE(眼底图像配准)数据集上验证了所提出框架的有效性,并证明它在准确性方面明显优于先前的视网膜图像配准方法。所提出的方法通过实现以下两点提高了大量纵向UWF图像的实用性:(a)自动计算血管变化指标,如血管密度和管径;(b)标准化和配准的检查,能够更好地向医生突出显示具有临床意义的变化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验