Suppr超能文献

鉴定调控体脂肪分布的罕见功能丧失性遗传变异。

Identification of Rare Loss-of-Function Genetic Variation Regulating Body Fat Distribution.

机构信息

MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, CB2 0QQ, UK.

University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK.

出版信息

J Clin Endocrinol Metab. 2022 Mar 24;107(4):1065-1077. doi: 10.1210/clinem/dgab877.

Abstract

CONTEXT

Biological and translational insights from large-scale, array-based genetic studies of fat distribution, a key determinant of metabolic health, have been limited by the difficulty in linking predominantly noncoding variants to specific gene targets. Rare coding variant analyses provide greater confidence that a specific gene is involved, but do not necessarily indicate whether gain or loss of function (LoF) would be of most therapeutic benefit.

OBJECTIVE

This work aimed to identify genes/proteins involved in determining fat distribution.

METHODS

We combined the power of genome-wide analysis of array-based rare, nonsynonymous variants in 450 562 individuals in the UK Biobank with exome-sequence-based rare LoF gene burden testing in 184 246 individuals.

RESULTS

The data indicate that the LoF of 4 genes (PLIN1 [LoF variants, P = 5.86 × 10-7], INSR [LoF variants, P = 6.21 × 10-7], ACVR1C [LoF + moderate impact variants, P = 1.68 × 10-7; moderate impact variants, P = 4.57 × 10-7], and PDE3B [LoF variants, P = 1.41 × 10-6]) is associated with a beneficial effect on body mass index-adjusted waist-to-hip ratio and increased gluteofemoral fat mass, whereas LoF of PLIN4 (LoF variants, P = 5.86 × 10-7 adversely affects these parameters. Phenotypic follow-up suggests that LoF of PLIN1, PDE3B, and ACVR1C favorably affects metabolic phenotypes (eg, triglycerides [TGs] and high-density lipoprotein [HDL] cholesterol concentrations) and reduces the risk of cardiovascular disease, whereas PLIN4 LoF has adverse health consequences. INSR LoF is associated with lower TG and HDL levels but may increase the risk of type 2 diabetes.

CONCLUSION

This study robustly implicates these genes in the regulation of fat distribution, providing new and in some cases somewhat counterintuitive insight into the potential consequences of targeting these molecules therapeutically.

摘要

背景

基于大型基因芯片的脂肪分布研究,作为代谢健康的关键决定因素,生物和转化研究取得的进展有限,这主要是因为将主要是非编码变体与特定基因靶标联系起来具有一定难度。罕见编码变异分析提供了更大的信心,表明特定基因参与其中,但不一定表明获得或丧失功能(LoF)会带来最大的治疗益处。

目的

本研究旨在确定参与决定脂肪分布的基因/蛋白。

方法

我们结合了英国生物库 450562 名个体中基于基因芯片的罕见非同义变异的全基因组分析的结果,以及 184246 名个体中基于外显子组测序的罕见 LoF 基因负担测试的结果。

结果

数据表明,4 个基因(PLIN1[LoF 变异,P=5.86×10-7]、INSR[LoF 变异,P=6.21×10-7]、ACVR1C[LoF+中度影响变异,P=1.68×10-7;中度影响变异,P=4.57×10-7]和 PDE3B[LoF 变异,P=1.41×10-6])的 LoF 与体重指数校正后的腰围臀围比和增加的臀股脂肪量呈正相关,而 PLIN4 的 LoF(LoF 变异,P=5.86×10-7)则对这些参数有不利影响。表型随访表明,PLIN1、PDE3B 和 ACVR1C 的 LoF 有利于代谢表型(如甘油三酯[TGs]和高密度脂蛋白[HDL]胆固醇浓度),降低心血管疾病风险,而 PLIN4 的 LoF 则对健康有不利影响。INSR 的 LoF 与较低的 TG 和 HDL 水平相关,但可能会增加 2 型糖尿病的风险。

结论

本研究强有力地表明这些基因参与了脂肪分布的调节,为靶向这些分子的治疗提供了新的、在某些情况下有些出乎意料的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5a7/8947777/8493e1b52d87/dgab877f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验