实时预测帕金森病患者的冻结步态:解决类别不平衡问题。

Towards Real-Time Prediction of Freezing of Gait in Patients With Parkinson's Disease: Addressing the Class Imbalance Problem.

机构信息

Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA.

出版信息

Sensors (Basel). 2019 Sep 10;19(18):3898. doi: 10.3390/s19183898.

Abstract

Freezing of gait (FoG) is a common motor symptom in patients with Parkinson's disease (PD). FoG impairs gait initiation and walking and increases fall risk. Intelligent external cueing systems implementing FoG detection algorithms have been developed to help patients recover gait after freezing. However, predicting FoG before its occurrence enables preemptive cueing and may prevent FoG. Such prediction remains challenging given the relative infrequency of freezing compared to non-freezing events. In this study, we investigated the ability of individual and ensemble classifiers to predict FoG. We also studied the effect of the ADAptive SYNthetic (ADASYN) sampling algorithm and classification cost on classifier performance. Eighteen PD patients performed a series of daily walking tasks wearing accelerometers on their ankles, with nine experiencing FoG. The ensemble classifier formed by Support Vector Machines, K-Nearest Neighbors, and Multi-Layer Perceptron using bagging techniques demonstrated highest performance (F1 = 90.7) when synthetic FoG samples were added to the training set and class cost was set as twice that of normal gait. The model identified 97.4% of the events, with 66.7% being predicted. This study demonstrates our algorithm's potential for accurate prediction of gait events and the provision of preventive cueing in spite of limited event frequency.

摘要

冻结步态(Freezing of gait,FoG)是帕金森病(Parkinson's disease,PD)患者常见的运动症状。FoG 会损害步态起始和行走,并增加跌倒风险。已经开发出智能外部提示系统,实现 FoG 检测算法,以帮助患者在冻结后恢复步态。然而,由于与非冻结事件相比,冻结相对较少发生,因此预测 FoG 的发生仍然具有挑战性。在这项研究中,我们研究了个体和集成分类器预测 FoG 的能力。我们还研究了 ADAptive SYNthetic(ADASYN)采样算法和分类成本对分类器性能的影响。18 名 PD 患者在脚踝上佩戴加速度计进行了一系列日常行走任务,其中 9 名经历了 FoG。当在训练集中添加合成 FoG 样本并将类成本设置为正常步态的两倍时,使用袋装技术形成的由支持向量机、K-最近邻和多层感知器组成的集成分类器表现出最高性能(F1 = 90.7)。该模型识别出 97.4%的事件,其中 66.7%被预测。这项研究表明,尽管事件频率有限,我们的算法仍具有准确预测步态事件和提供预防性提示的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed6/6767263/a5f0c5ae1d48/sensors-19-03898-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索