Suppr超能文献

采用不同的放射组学分析方法评估局部晚期直肠肿瘤患者的复发风险

Evaluation of the Risk of Recurrence in Patients with Local Advanced Rectal Tumours by Different Radiomic Analysis Approaches.

作者信息

Khadidos Alaa, Khadidos Adil, Mirza Olfat M, Hasanin Tawfiq, Enbeyle Wegayehu, Hamad Abdulsattar Abdullah

机构信息

Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia.

Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia.

出版信息

Appl Bionics Biomech. 2021 Nov 28;2021:4520450. doi: 10.1155/2021/4520450. eCollection 2021.

Abstract

The word radiomics, like all domains of type omics, assumes the existence of a large amount of data. Using artificial intelligence, in particular, different machine learning techniques, is a necessary step for better data exploitation. Classically, researchers in this field of radiomics have used conventional machine learning techniques (random forest, for example). More recently, deep learning, a subdomain of machine learning, has emerged. Its applications are increasing, and the results obtained so far have demonstrated their remarkable effectiveness. Several previous studies have explored the potential applications of radiomics in colorectal cancer. These potential applications can be grouped into several categories like evaluation of the reproducibility of texture data, prediction of response to treatment, prediction of the occurrence of metastases, and prediction of survival. Few studies, however, have explored the potential of radiomics in predicting recurrence-free survival. In this study, we evaluated and compared six conventional learning models and a deep learning model, based on MRI textural analysis of patients with locally advanced rectal tumours, correlated with the risk of recidivism; in traditional learning, we compared 2D image analysis models vs. 3D image analysis models, models based on a textural analysis of the tumour versus models taking into account the peritumoural environment in addition to the tumour itself. In deep learning, we built a 16-layer convolutional neural network model, driven by a 2D MRI image database comprising both the native images and the bounding box corresponding to each image.

摘要

“放射组学”一词,与所有“组学”领域一样,假定存在大量数据。特别是使用人工智能,即不同的机器学习技术,是更好地利用数据的必要步骤。传统上,放射组学领域的研究人员使用传统的机器学习技术(例如随机森林)。最近,机器学习的一个子领域——深度学习出现了。其应用正在增加,并且迄今为止获得的结果已经证明了它们的显著有效性。先前的几项研究探讨了放射组学在结直肠癌中的潜在应用。这些潜在应用可以分为几类,如纹理数据再现性的评估、治疗反应的预测、转移发生的预测以及生存的预测。然而,很少有研究探讨放射组学在预测无复发生存方面的潜力。在本研究中,我们基于局部晚期直肠肿瘤患者的MRI纹理分析,评估并比较了六种传统学习模型和一种深度学习模型,这些模型与复发风险相关;在传统学习中,我们比较了二维图像分析模型与三维图像分析模型、基于肿瘤纹理分析的模型与除肿瘤本身外还考虑肿瘤周围环境的模型。在深度学习中,我们构建了一个16层卷积神经网络模型,由一个二维MRI图像数据库驱动,该数据库包括原始图像和与每个图像对应的边界框。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99fe/8645400/14541893ef10/ABB2021-4520450.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验