Suppr超能文献

通过迭代社区检测和相似性测量对静息态皮质动力学进行自动分区

Automatic parcellation of resting-state cortical dynamics by iterative community detection and similarity measurements.

作者信息

Lee Tien-Wen, Tramontano Gerald

机构信息

The Neuro Cognitive Institute (NCI) Clinical Research Foundation, NJ 07856, US.

Department of Psychiatry, Dajia Lee's General Hospital, Lee's Medical Corporation, Taichung 43748, Taiwan.

出版信息

AIMS Neurosci. 2021 Sep 10;8(4):526-542. doi: 10.3934/Neuroscience.2021028. eCollection 2021.

Abstract

To investigate the properties of a large-scale brain network, it is a common practice to reduce the dimension of resting state functional magnetic resonance imaging (rs-fMRI) data to tens to hundreds of nodes. This study presents an analytic streamline that incorporates modular analysis and similarity measurements (MOSI) to fulfill functional parcellation (FP) of the cortex. MOSI is carried out by iteratively dividing a module into sub-modules (via the Louvain community detection method) and unifying similar neighboring sub-modules into a new module (adjacent sub-modules with a similarity index <0.05) until the brain modular structures of successive runs become constant. By adjusting the gamma value, a parameter in the Louvain algorithm, MOSI may segment the cortex with different resolutions. rs-fMRI scans of 33 healthy subjects were selected from the dataset of the Rockland sample. MOSI was applied to the rs-fMRI data after standardized pre-processing steps. The results indicate that the parcellated modules by MOSI are more homogeneous in content. After reducing the grouped voxels to representative neural nodes, the network structures were explored. The resultant network components were comparable with previous reports. The validity of MOSI in achieving data reduction has been confirmed. MOSI may provide a novel starting point for further investigation of the network properties of rs-fMRI data. Potential applications of MOSI are discussed.

摘要

为了研究大规模脑网络的特性,将静息态功能磁共振成像(rs-fMRI)数据的维度缩减至数十到数百个节点是一种常见的做法。本研究提出了一种结合模块化分析和相似性测量(MOSI)的分析流程,以实现皮质的功能分区(FP)。MOSI的实施方式为:通过迭代地将一个模块划分为子模块(采用鲁汶社区检测方法),并将相似的相邻子模块合并为一个新模块(相似性指数<0.05的相邻子模块),直到连续运行的脑模块化结构变得恒定。通过调整鲁汶算法中的γ值,MOSI可以以不同的分辨率分割皮质。从罗克兰样本的数据集中选取了33名健康受试者的rs-fMRI扫描数据。在经过标准化的预处理步骤后,将MOSI应用于rs-fMRI数据。结果表明,通过MOSI划分的模块在内容上更加均匀。在将分组的体素缩减为具有代表性的神经节点后,对网络结构进行了探索。所得的网络组件与先前的报告具有可比性。MOSI在实现数据缩减方面的有效性得到了证实。MOSI可能为进一步研究rs-fMRI数据的网络特性提供一个新的起点。文中还讨论了MOSI的潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ac9/8611189/ec99af847986/neurosci-08-04-028-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验