Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany.
J Chem Phys. 2021 Dec 7;155(21):214106. doi: 10.1063/5.0064668.
Recent advances in deep learning frameworks have established valuable tools for analyzing the long-timescale behavior of complex systems, such as proteins. In particular, the inclusion of physical constraints, e.g., time-reversibility, was a crucial step to make the methods applicable to biophysical systems. Furthermore, we advance the method by incorporating experimental observables into the model estimation showing that biases in simulation data can be compensated for. We further develop a new neural network layer in order to build a hierarchical model allowing for different levels of details to be studied. Finally, we propose an attention mechanism, which highlights important residues for the classification into different states. We demonstrate the new methodology on an ultralong molecular dynamics simulation of the Villin headpiece miniprotein.
深度学习框架的最新进展为分析复杂系统(如蛋白质)的长时间行为提供了有价值的工具。特别是,纳入物理约束条件,例如时间反演性,是使这些方法适用于生物物理系统的关键步骤。此外,我们通过将实验观测值纳入模型估计中来改进该方法,表明可以补偿模拟数据中的偏差。我们进一步开发了一种新的神经网络层,以构建一个允许研究不同细节水平的层次模型。最后,我们提出了一种注意力机制,该机制突出了对分类到不同状态的重要残基。我们在对 Villin 头部小蛋白的超长时间分子动力学模拟上演示了新方法。