Suppr超能文献

用于分子动力学深度学习的VAMP网络。

VAMPnets for deep learning of molecular kinetics.

作者信息

Mardt Andreas, Pasquali Luca, Wu Hao, Noé Frank

机构信息

Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195, Berlin, Germany.

出版信息

Nat Commun. 2018 Jan 2;9(1):5. doi: 10.1038/s41467-017-02388-1.

Abstract

There is an increasing demand for computing the relevant structures, equilibria, and long-timescale kinetics of biomolecular processes, such as protein-drug binding, from high-throughput molecular dynamics simulations. Current methods employ transformation of simulated coordinates into structural features, dimension reduction, clustering the dimension-reduced data, and estimation of a Markov state model or related model of the interconversion rates between molecular structures. This handcrafted approach demands a substantial amount of modeling expertise, as poor decisions at any step will lead to large modeling errors. Here we employ the variational approach for Markov processes (VAMP) to develop a deep learning framework for molecular kinetics using neural networks, dubbed VAMPnets. A VAMPnet encodes the entire mapping from molecular coordinates to Markov states, thus combining the whole data processing pipeline in a single end-to-end framework. Our method performs equally or better than state-of-the-art Markov modeling methods and provides easily interpretable few-state kinetic models.

摘要

通过高通量分子动力学模拟来计算生物分子过程(如蛋白质 - 药物结合)的相关结构、平衡和长时间尺度动力学的需求日益增加。当前的方法包括将模拟坐标转换为结构特征、降维、对降维后的数据进行聚类,以及估计马尔可夫状态模型或分子结构间相互转换速率的相关模型。这种手工制作的方法需要大量的建模专业知识,因为任何一步的错误决策都会导致较大的建模误差。在此,我们采用马尔可夫过程变分方法(VAMP)来开发一个使用神经网络的分子动力学深度学习框架,称为VAMPnets。一个VAMPnet对从分子坐标到马尔可夫状态的整个映射进行编码,从而将整个数据处理管道整合在一个端到端的框架中。我们的方法与最先进的马尔可夫建模方法表现相当或更优,并提供易于解释的少状态动力学模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c54/5750224/6b72391de634/41467_2017_2388_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验