Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.
Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA.
Nat Commun. 2021 Dec 8;12(1):7114. doi: 10.1038/s41467-021-27342-0.
Protein domains are the basic units of protein structure and function. Comparative analysis of genomes and proteomes showed that domain recombination is a main driver of multidomain protein functional diversification and some of the constraining genomic mechanisms are known. Much less is known about biophysical mechanisms that determine whether protein domains can be combined into viable protein folds. Here, we use massively parallel insertional mutagenesis to determine compatibility of over 300,000 domain recombination variants of the Inward Rectifier K channel Kir2.1 with channel surface expression. Our data suggest that genomic and biophysical mechanisms acted in concert to favor gain of large, structured domain at protein termini during ion channel evolution. We use machine learning to build a quantitative biophysical model of domain compatibility in Kir2.1 that allows us to derive rudimentary rules for designing domain insertion variants that fold and traffic to the cell surface. Positional Kir2.1 responses to motif insertion clusters into distinct groups that correspond to contiguous structural regions of the channel with distinct biophysical properties tuned towards providing either folding stability or gating transitions. This suggests that insertional profiling is a high-throughput method to annotate function of ion channel structural regions.
蛋白质结构域是蛋白质结构和功能的基本单位。对基因组和蛋白质组的比较分析表明,结构域重组是多结构域蛋白质功能多样化的主要驱动因素,一些约束性的基因组机制是已知的。关于决定蛋白质结构域能否组合成可行的蛋白质折叠的生物物理机制,人们知之甚少。在这里,我们使用大规模并行插入诱变来确定超过 300,000 种内向整流钾通道 Kir2.1 结构域重组变体与通道表面表达的兼容性。我们的数据表明,基因组和生物物理机制协同作用,有利于在离子通道进化过程中在蛋白质末端获得大的、结构域。我们使用机器学习构建了 Kir2.1 结构域兼容性的定量生物物理模型,该模型允许我们得出设计能够折叠并转运到细胞表面的结构域插入变体的基本规则。位置 Kir2.1 对基序插入的反应聚类成不同的组,这些组对应于通道的不同结构区域,这些区域具有不同的生物物理特性,以提供折叠稳定性或门控转变。这表明插入分析是一种高通量方法,可以注释离子通道结构区域的功能。