Suppr超能文献

通过减少数据异质性和误差来改进 GWAS 汇总统计数据的分析。

Improved analyses of GWAS summary statistics by reducing data heterogeneity and errors.

机构信息

Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.

Epigenetics Research Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.

出版信息

Nat Commun. 2021 Dec 8;12(1):7117. doi: 10.1038/s41467-021-27438-7.

Abstract

statistics from genome-wide association studies (GWAS) have facilitated the development of various summary data-based methods, which typically require a reference sample for linkage disequilibrium (LD) estimation. Analyses using these methods may be biased by errors in GWAS summary data or LD reference or heterogeneity between GWAS and LD reference. Here we propose a quality control method, DENTIST, that leverages LD among genetic variants to detect and eliminate errors in GWAS or LD reference and heterogeneity between the two. Through simulations, we demonstrate that DENTIST substantially reduces false-positive rate in detecting secondary signals in the summary-data-based conditional and joint association analysis, especially for imputed rare variants (false-positive rate reduced from >28% to <2% in the presence of heterogeneity between GWAS and LD reference). We further show that DENTIST can improve other summary-data-based analyses such as fine-mapping analysis.

摘要

全基因组关联研究(GWAS)的统计数据促进了各种基于汇总数据的方法的发展,这些方法通常需要参考样本进行连锁不平衡(LD)估计。使用这些方法进行分析可能会受到 GWAS 汇总数据或 LD 参考中的错误以及 GWAS 和 LD 参考之间的异质性的影响。在这里,我们提出了一种质量控制方法 DENTIST,该方法利用遗传变异之间的 LD 来检测和消除 GWAS 或 LD 参考中的错误以及两者之间的异质性。通过模拟,我们证明 DENTIST 大大降低了在基于汇总数据的条件和联合关联分析中检测次要信号的假阳性率,特别是对于 GWAS 和 LD 参考之间存在异质性的情况下的稀有变异(假阳性率从存在异质性的情况下的>28%降低到<2%)。我们进一步表明,DENTIST 可以改进其他基于汇总数据的分析,例如精细映射分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bfd/8654883/b87e2847d2a4/41467_2021_27438_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验