Banavar Guruduth, Ogundijo Oyetunji, Toma Ryan, Rajagopal Sathyapriya, Lim Yen Kai, Tang Kai, Camacho Francine, Torres Pedro J, Gline Stephanie, Parks Matthew, Kenny Liz, Perlina Ally, Tily Hal, Dimitrova Nevenka, Amar Salomon, Vuyisich Momchilo, Punyadeera Chamindie
Viome Research Institute, Viome Life Sciences, Inc., New York City, USA.
Viome Research Institute, Viome Life Sciences, Inc., Seattle, USA.
NPJ Genom Med. 2021 Dec 8;6(1):105. doi: 10.1038/s41525-021-00257-x.
Despite advances in cancer treatment, the 5-year mortality rate for oral cancers (OC) is 40%, mainly due to the lack of early diagnostics. To advance early diagnostics for high-risk and average-risk populations, we developed and evaluated machine-learning (ML) classifiers using metatranscriptomic data from saliva samples (n = 433) collected from oral premalignant disorders (OPMD), OC patients (n = 71) and normal controls (n = 171). Our diagnostic classifiers yielded a receiver operating characteristics (ROC) area under the curve (AUC) up to 0.9, sensitivity up to 83% (92.3% for stage 1 cancer) and specificity up to 97.9%. Our metatranscriptomic signature incorporates both taxonomic and functional microbiome features, and reveals a number of taxa and functional pathways associated with OC. We demonstrate the potential clinical utility of an AI/ML model for diagnosing OC early, opening a new era of non-invasive diagnostics, enabling early intervention and improved patient outcomes.
尽管癌症治疗取得了进展,但口腔癌(OC)的5年死亡率仍为40%,主要原因是缺乏早期诊断。为了推进对高危和中危人群的早期诊断,我们利用从口腔癌前病变(OPMD)、OC患者(n = 71)和正常对照(n = 171)收集的唾液样本(n = 433)的宏转录组数据,开发并评估了机器学习(ML)分类器。我们的诊断分类器产生的受试者工作特征(ROC)曲线下面积(AUC)高达0.9,灵敏度高达83%(1期癌症为92.3%),特异性高达97.9%。我们的宏转录组特征纳入了分类学和功能性微生物组特征,并揭示了许多与OC相关的分类群和功能途径。我们证明了AI/ML模型在早期诊断OC方面的潜在临床效用,开启了无创诊断的新时代,实现了早期干预并改善了患者预后。