Suppr超能文献

由于 CO2 的增加,全球光合作用历史增长受到限制。

A constraint on historic growth in global photosynthesis due to increasing CO.

机构信息

Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA, USA.

Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

出版信息

Nature. 2021 Dec;600(7888):253-258. doi: 10.1038/s41586-021-04096-9. Epub 2021 Dec 8.

Abstract

The global terrestrial carbon sink is increasing, offsetting roughly a third of anthropogenic CO released into the atmosphere each decade, and thus serving to slow the growth of atmospheric CO. It has been suggested that a CO-induced long-term increase in global photosynthesis, a process known as CO fertilization, is responsible for a large proportion of the current terrestrial carbon sink. The estimated magnitude of the historic increase in photosynthesis as result of increasing atmospheric CO concentrations, however, differs by an order of magnitude between long-term proxies and terrestrial biosphere models. Here we quantify the historic effect of CO on global photosynthesis by identifying an emergent constraint that combines terrestrial biosphere models with global carbon budget estimates. Our analysis suggests that CO fertilization increased global annual photosynthesis by 11.85 ± 1.4%, or 13.98 ± 1.63 petagrams carbon (mean ± 95% confidence interval) between 1981 and 2020. Our results help resolve conflicting estimates of the historic sensitivity of global photosynthesis to CO, and highlight the large impact anthropogenic emissions have had on ecosystems worldwide.

摘要

全球陆地碳汇正在增加,抵消了每十年人为排放到大气中的 CO 的约三分之一,从而减缓了大气 CO 的增长。有人认为,CO 长期以来对全球光合作用的促进作用,即所谓的 CO 施肥作用,是当前陆地碳汇的很大一部分原因。然而,长期代理和陆地生物圈模型之间对由于大气 CO 浓度增加而导致的光合作用历史增长的估计幅度相差一个数量级。在这里,我们通过确定将陆地生物圈模型与全球碳预算估计相结合的新兴约束条件,来量化 CO 对全球光合作用的历史影响。我们的分析表明,1981 年至 2020 年间,CO 施肥作用使全球年光合作用增加了 11.85%±1.4%,即 13.98±1.63 太字节碳(平均值±95%置信区间)。我们的结果有助于解决对全球光合作用对 CO 的历史敏感性的相互矛盾的估计,并强调了人为排放对全球生态系统的巨大影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验