Nutrition & Preventive Medicine Group, Norwich Medical School, University of East Anglia, Norwich, NR47UQ, UK.
Institute for Global Food Security, Queen's University Belfast, BT9 5DL, Ireland.
Clin Nutr. 2022 Jan;41(1):165-176. doi: 10.1016/j.clnu.2021.11.030. Epub 2021 Nov 27.
BACKGROUND & AIMS: Whilst the cardioprotective effects of blueberry intake have been shown in prospective studies and short-term randomized controlled trials (RCTs), it is unknown whether anthocyanin-rich blueberries can attenuate the postprandial, cardiometabolic dysfunction which follows energy-dense food intakes; especially in at-risk populations. We therefore examined whether adding blueberries to a high-fat/high-sugar meal affected the postprandial cardiometabolic response over 24 h.
A parallel, double-blind RCT (n = 45; age 63.4 ± 7.4 years; 64% male; BMI 31.4 ± 3.1 kg/m) was conducted in participants with metabolic syndrome. After baseline assessments, an energy-dense drink (969 Kcals, 64.5 g fat, 84.5 g carbohydrate, 17.9 g protein) was consumed with either 26 g (freeze-dried) blueberries (equivalent to 1 cup/150 g fresh blueberries) or 26 g isocaloric matched placebo. Repeat blood samples (30, 60, 90, 120, 180, 360 min and 24 h), a 24 h urine collection and vascular measures (at 3, 6, and 24 h) were performed. Insulin and glucose, lipoprotein levels, endothelial function (flow mediated dilatation (FMD)), aortic and systemic arterial stiffness (pulse wave velocity (PWV), Augmentation Index (AIx) respectively), blood pressure (BP), and anthocyanin metabolism (serum and 24 h urine) were assessed.
Blueberries favorably affected postprandial (0-24 h) concentrations of glucose (p < 0.001), insulin (p < 0.01), total cholesterol (p = 0.04), HDL-C, large HDL particles (L-HDL-P) (both p < 0.01), extra-large HDL particles (XL-HDL-P; p = 0.04) and Apo-A1 (p = 0.01), but not LDL-C, TG, or Apo-B. After a transient higher peak glucose concentration at 1 h after blueberry intake ([8.2 mmol/L, 95%CI: 7.7, 8.8] vs placebo [6.9 mmol/L, 95%CI: 6.4, 7.4]; p = 0.001), blueberries significantly attenuated 3 h glucose ([4.3 mmol/L, 95%CI: 3.8, 4.8] vs placebo [5.1 mmol/L, 95%CI: 4.6, 5.6]; p = 0.03) and insulin concentrations (blueberry: [23.4 pmol/L, 95%CI: 15.4, 31.3] vs placebo [52.9 pmol/L, 95%CI: 41.0, 64.8]; p = 0.0001). Blueberries also improved HDL-C ([1.12 mmol/L, 95%CI: 1.06, 1.19] vs placebo [1.08 mmol/L, 95%CI: 1.02, 1.14]; p = 0.04) at 90 min and XL-HDLP levels ([0.38 × 10-6, 95%CI: 0.35, 0.42] vs placebo [0.35 × 10-6, 95%CI: 0.32, 0.39]; p = 0.02) at 3 h. Likewise, significant improvements were observed 6 h after blueberries for HDL-C ([1.17 mmol/L, 95%CI: 1.11, 1.24] vs placebo [1.10 mmol/L, 95%CI: 1.03, 1.16]; p < 0.001), Apo-A1 ([1.37 mmol/L, 95%CI: 1.32, 1.41] vs placebo [1.31 mmol/L, 95%CI: 1.27, 1.35]; p = 0.003), L-HDLP ([0.70 × 10-6, 95%CI: 0.60, 0.81] vs placebo [0.59 × 10-6, 95%CI: 0.50, 0.68]; p = 0.003) and XL-HDLP ([0.44 × 10-6, 95%CI: 0.40, 0.48] vs placebo [0.40 × 10-6, 95%CI: 0.36, 0.44]; p < 0.001). Similarly, total cholesterol levels were significantly lower 24 h after blueberries ([4.9 mmol/L, 95%CI: 4.6, 5.1] vs placebo [5.0 mmol/L, 95%CI: 4.8, 5.3]; p = 0.04). Conversely, no effects were observed for FMD, PWV, AIx and BP. As anticipated, total anthocyanin-derived phenolic acid metabolite concentrations significantly increased in the 24 h after blueberry intake; especially hippuric acid (6-7-fold serum increase, 10-fold urinary increase). In exploratory analysis, a range of serum/urine metabolites were associated with favorable changes in total cholesterol, HDL-C, XL-HDLP and Apo-A1 (R = 0.43 to 0.50).
For the first time, in an at-risk population, we show that single-exposure to the equivalent of 1 cup blueberries (provided as freeze-dried powder) attenuates the deleterious postprandial effects of consuming an energy-dense high-fat/high-sugar meal over 24 h; reducing insulinaemia and glucose levels, lowering cholesterol, and improving HDL-C, fractions of HDL-P and Apo-A1. Consequently, intake of anthocyanin-rich blueberries may reduce the acute cardiometabolic burden of energy-dense meals.
NCT02035592 at www.clinicaltrials.gov.
尽管前瞻性研究和短期随机对照试验(RCT)已经证明了蓝莓对心脏的保护作用,但目前尚不清楚富含花青素的蓝莓是否可以减轻摄入高热量/高糖食物后的餐后代谢功能障碍,尤其是在高危人群中。因此,我们研究了在高脂肪/高糖餐后添加蓝莓是否会影响 24 小时的餐后心血管代谢反应。
在代谢综合征患者中进行了一项平行、双盲 RCT(n=45;年龄 63.4±7.4 岁;64%为男性;BMI 31.4±3.1kg/m2)。基线评估后,饮用能量密集型饮料(969kcal,64.5g 脂肪,84.5g 碳水化合物,17.9g 蛋白质),同时摄入 26g(冻干)蓝莓(相当于 1 杯/150g 新鲜蓝莓)或 26g 等热量匹配安慰剂。在 30、60、90、120、180、360 分钟和 24 小时时进行重复采血、24 小时尿液收集和血管测量。评估胰岛素和葡萄糖、脂蛋白水平、内皮功能(血流介导的扩张(FMD))、主动脉和系统动脉僵硬度(脉搏波速度(PWV)、增强指数(AIx))、血压(BP)和花青素代谢(血清和 24 小时尿液)。
蓝莓可显著改善餐后(0-24 小时)血糖(p<0.001)、胰岛素(p<0.01)、总胆固醇(p=0.04)、高密度脂蛋白胆固醇(HDL-C)、大高密度脂蛋白颗粒(L-HDL-P)(均 p<0.01)、特大高密度脂蛋白颗粒(XL-HDL-P;p=0.04)和载脂蛋白 A1(p=0.01),但不影响低密度脂蛋白胆固醇(LDL-C)、甘油三酯(TG)或载脂蛋白 B(Apo-B)。在摄入蓝莓后 1 小时,血糖浓度出现短暂的峰值升高([8.2mmol/L,95%CI:7.7,8.8] vs 安慰剂[6.9mmol/L,95%CI:6.4,7.4];p=0.001),但蓝莓可显著降低 3 小时血糖浓度([4.3mmol/L,95%CI:3.8,4.8] vs 安慰剂[5.1mmol/L,95%CI:4.6,5.6];p=0.03)和胰岛素浓度(蓝莓:[23.4pmol/L,95%CI:15.4,31.3] vs 安慰剂[52.9pmol/L,95%CI:41.0,64.8];p=0.0001)。蓝莓还可改善 HDL-C([1.12mmol/L,95%CI:1.06,1.19] vs 安慰剂[1.08mmol/L,95%CI:1.02,1.14];p=0.04)在 90 分钟时和 XL-HDLP 水平([0.38×10-6,95%CI:0.35,0.42] vs 安慰剂[0.35×10-6,95%CI:0.32,0.39];p=0.02)在 3 小时时。同样,在摄入蓝莓后 6 小时观察到 HDL-C([1.17mmol/L,95%CI:1.11,1.24] vs 安慰剂[1.10mmol/L,95%CI:1.03,1.16];p<0.001)、载脂蛋白 A1([1.37mmol/L,95%CI:1.32,1.41] vs 安慰剂[1.31mmol/L,95%CI:1.27,1.35];p=0.003)、L-HDLP([0.70×10-6,95%CI:0.60,0.81] vs 安慰剂[0.59×10-6,95%CI:0.50,0.68];p=0.003)和 XL-HDLP([0.44×10-6,95%CI:0.40,0.48] vs 安慰剂[0.40×10-6,95%CI:0.36,0.44];p<0.001)显著改善。同样,24 小时后总胆固醇水平也显著降低([4.9mmol/L,95%CI:4.6,5.1] vs 安慰剂[5.0mmol/L,95%CI:4.8,5.3];p=0.04)。相反,FMD、PWV、AIx 和 BP 没有观察到影响。如预期的那样,蓝莓摄入后 24 小时内总花青素衍生酚酸代谢物浓度显著增加,特别是马尿酸(血清增加 6-7 倍,尿液增加 10 倍)。在探索性分析中,一系列血清/尿液代谢物与总胆固醇、HDL-C、XL-HDLP 和载脂蛋白 A1 的有利变化相关(R=0.43 至 0.50)。
首次在高危人群中,我们表明单次摄入相当于 1 杯蓝莓(提供冻干粉末)可减轻摄入高热量/高糖餐 24 小时后有害的餐后效应;降低胰岛素血症和血糖水平,降低胆固醇,并改善 HDL-C、HDL-P 分数和载脂蛋白 A1。因此,摄入富含花青素的蓝莓可能会降低高热量餐的急性代谢负担。
NCT02035592 在 www.clinicaltrials.gov 上。