文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

授权交通控制器手势识别用于情境感知自动驾驶。

Authorized Traffic Controller Hand Gesture Recognition for Situation-Aware Autonomous Driving.

机构信息

Yonsei Institute of Convergence Technology, Yonsei University, Incheon 21983, Korea.

出版信息

Sensors (Basel). 2021 Nov 27;21(23):7914. doi: 10.3390/s21237914.


DOI:10.3390/s21237914
PMID:34883917
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8659850/
Abstract

An authorized traffic controller (ATC) has the highest priority for direct road traffic. In some irregular situations, the ATC supersedes other traffic control. Human drivers indigenously understand such situations and tend to follow the ATC; however, an autonomous vehicle (AV) can become confused in such circumstances. Therefore, autonomous driving (AD) crucially requires a human-level understanding of situation-aware traffic gesture recognition. In AVs, vision-based recognition is particularly desirable because of its suitability; however, such recognition systems have various bottlenecks, such as failing to recognize other humans on the road, identifying a variety of ATCs, and gloves in the hands of ATCs. We propose a situation-aware traffic control hand-gesture recognition system, which includes ATC detection and gesture recognition. Three-dimensional (3D) hand model-based gesture recognition is used to mitigate the problem associated with gloves. Our database contains separate training and test videos of approximately 60 min length, captured at a frame rate of 24 frames per second. It has 35,291 different frames that belong to traffic control hand gestures. Our approach correctly recognized traffic control hand gestures; therefore, the proposed system can be considered as an extension of the operational domain of the AV.

摘要

授权的交通控制器(ATC)具有直接道路交通的最高优先级。在某些不规则情况下,ATC 会取代其他交通管制。人类驾驶员天生就理解这种情况,并倾向于跟随 ATC;然而,自动驾驶车辆(AV)在这种情况下可能会感到困惑。因此,自主驾驶(AD)迫切需要对情境感知的交通手势识别具有人类水平的理解。在自动驾驶汽车中,基于视觉的识别由于其适用性而特别可取;然而,这种识别系统存在各种瓶颈,例如无法识别道路上的其他行人、识别各种 ATC 以及 ATC 手中的手套。我们提出了一种情境感知的交通管制手势识别系统,包括 ATC 检测和手势识别。基于三维(3D)手模型的手势识别用于缓解与手套相关的问题。我们的数据库包含大约 60 分钟长的单独训练和测试视频,帧率为每秒 24 帧。它有 35291 个不同的属于交通管制手势的帧。我们的方法正确识别了交通管制手势;因此,所提出的系统可以被视为自动驾驶车辆的操作范围的扩展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ac/8659850/7d795597f462/sensors-21-07914-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ac/8659850/6a25aa5a76cc/sensors-21-07914-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ac/8659850/c9284fdc6c33/sensors-21-07914-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ac/8659850/171f1868f4e9/sensors-21-07914-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ac/8659850/ea9399fd8cb7/sensors-21-07914-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ac/8659850/6e447a6959a0/sensors-21-07914-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ac/8659850/28ecd7ddc5f6/sensors-21-07914-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ac/8659850/2cc94bad0273/sensors-21-07914-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ac/8659850/e8dbefd74a39/sensors-21-07914-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ac/8659850/d76821e2829b/sensors-21-07914-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ac/8659850/fb4b90eeb2bb/sensors-21-07914-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ac/8659850/5c7af4edc25a/sensors-21-07914-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ac/8659850/9b738c27ba02/sensors-21-07914-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ac/8659850/7d795597f462/sensors-21-07914-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ac/8659850/6a25aa5a76cc/sensors-21-07914-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ac/8659850/c9284fdc6c33/sensors-21-07914-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ac/8659850/171f1868f4e9/sensors-21-07914-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ac/8659850/ea9399fd8cb7/sensors-21-07914-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ac/8659850/6e447a6959a0/sensors-21-07914-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ac/8659850/28ecd7ddc5f6/sensors-21-07914-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ac/8659850/2cc94bad0273/sensors-21-07914-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ac/8659850/e8dbefd74a39/sensors-21-07914-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ac/8659850/d76821e2829b/sensors-21-07914-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ac/8659850/fb4b90eeb2bb/sensors-21-07914-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ac/8659850/5c7af4edc25a/sensors-21-07914-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ac/8659850/9b738c27ba02/sensors-21-07914-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ac/8659850/7d795597f462/sensors-21-07914-g013.jpg

相似文献

[1]
Authorized Traffic Controller Hand Gesture Recognition for Situation-Aware Autonomous Driving.

Sensors (Basel). 2021-11-27

[2]
Motion Estimation and Hand Gesture Recognition-Based Human-UAV Interaction Approach in Real Time.

Sensors (Basel). 2022-3-25

[3]
Architecture Design and VLSI Implementation of 3D Hand Gesture Recognition System.

Sensors (Basel). 2021-10-10

[4]
Multi-Sensor-Based Blind-Spot Reduction Technology and a Data-Logging Method Using a Gesture Recognition Algorithm Based on Micro E-Mobility in an IoT Environment.

Sensors (Basel). 2022-1-30

[5]
Finger Gesture Spotting from Long Sequences Based on Multi-Stream Recurrent Neural Networks.

Sensors (Basel). 2020-1-18

[6]
Dynamic Hand Gesture Recognition Based on a Leap Motion Controller and Two-Layer Bidirectional Recurrent Neural Network.

Sensors (Basel). 2020-4-8

[7]
HAGR-D: A Novel Approach for Gesture Recognition with Depth Maps.

Sensors (Basel). 2015-11-12

[8]
Classification Algorithm for Person Identification and Gesture Recognition Based on Hand Gestures with Small Training Sets.

Sensors (Basel). 2020-12-18

[9]
Dynamic Hand Gesture Recognition in In-Vehicle Environment Based on FMCW Radar and Transformer.

Sensors (Basel). 2021-9-24

[10]
Real-Time Hand Gesture Monitoring Model Based on MediaPipe's Registerable System.

Sensors (Basel). 2024-9-27

引用本文的文献

[1]
An Object-Centric Hierarchical Pose Estimation Method Using Semantic High-Definition Maps for General Autonomous Driving.

Sensors (Basel). 2024-8-11

[2]
A Context-Aware, Computer-Vision-Based Approach for the Detection of Taxi Street-Hailing Scenes from Video Streams.

Sensors (Basel). 2023-5-16

本文引用的文献

[1]
Hand Gesture Recognition Based on Computer Vision: A Review of Techniques.

J Imaging. 2020-7-23

[2]
Detection of sitting posture using hierarchical image composition and deep learning.

PeerJ Comput Sci. 2021-3-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索