Suppr超能文献

小儿肘部 X 线片的精确实例分割。

Accurate Instance Segmentation in Pediatric Elbow Radiographs.

机构信息

Electronic Information School, Wuhan University, Wuhan 430072, China.

出版信息

Sensors (Basel). 2021 Nov 29;21(23):7966. doi: 10.3390/s21237966.

Abstract

Radiography is an essential basis for the diagnosis of fractures. For the pediatric elbow joint diagnosis, the doctor needs to diagnose abnormalities based on the location and shape of each bone, which is a great challenge for AI algorithms when interpreting radiographs. Bone instance segmentation is an effective upstream task for automatic radiograph interpretation. Pediatric elbow bone instance segmentation is a process by which each bone is extracted separately from radiography. However, the arbitrary directions and the overlapping of bones pose issues for bone instance segmentation. In this paper, we design a detection-segmentation pipeline to tackle these problems by using rotational bounding boxes to detect bones and proposing a robust segmentation method. The proposed pipeline mainly contains three parts: (i) We use Faster R-CNN-style architecture to detect and locate bones. (ii) We adopt the Oriented Bounding Box (OBB) to improve the localizing accuracy. (iii) We design the Global-Local Fusion Segmentation Network to combine the global and local contexts of the overlapped bones. To verify the effectiveness of our proposal, we conduct experiments on our self-constructed dataset that contains 1274 well-annotated pediatric elbow radiographs. The qualitative and quantitative results indicate that the network significantly improves the performance of bone extraction. Our methodology has good potential for applying deep learning in the radiography's bone instance segmentation.

摘要

放射摄影是骨折诊断的重要基础。对于儿科肘关节诊断,医生需要根据每个骨骼的位置和形状来诊断异常,这对解释 X 光片的 AI 算法来说是一个巨大的挑战。骨骼实例分割是自动 X 光解释的有效上游任务。儿科肘部骨骼实例分割是将每个骨骼从 X 光片中单独提取的过程。然而,骨骼的任意方向和重叠给骨骼实例分割带来了问题。在本文中,我们设计了一个检测-分割管道,通过使用旋转边界框来检测骨骼并提出一种稳健的分割方法来解决这些问题。该流水线主要包含三个部分:(i) 我们使用 Faster R-CNN 风格的架构来检测和定位骨骼。(ii) 我们采用定向边界框(OBB)来提高定位精度。(iii) 我们设计了全局-局部融合分割网络,以结合重叠骨骼的全局和局部上下文。为了验证我们建议的有效性,我们在我们自己构建的包含 1274 张标注良好的儿科肘部 X 光片的数据集上进行了实验。定性和定量结果表明,该网络显著提高了骨骼提取的性能。我们的方法在 X 光片的骨骼实例分割中应用深度学习具有很大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/791a/8659701/7b355cca584a/sensors-21-07966-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验