文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器学习和深度学习的考虑眼动的基于视觉的驾驶员认知负荷分类。

Vision-Based Driver's Cognitive Load Classification Considering Eye Movement Using Machine Learning and Deep Learning.

机构信息

School of Innovation, Design and Engineering, Mälardalen University, 722 20 Västerås, Sweden.

出版信息

Sensors (Basel). 2021 Nov 30;21(23):8019. doi: 10.3390/s21238019.


DOI:10.3390/s21238019
PMID:34884021
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8659461/
Abstract

Due to the advancement of science and technology, modern cars are highly technical, more activity occurs inside the car and driving is faster; however, statistics show that the number of road fatalities have increased in recent years because of drivers' unsafe behaviors. Therefore, to make the traffic environment safe it is important to keep the driver alert and awake both in human and autonomous driving cars. A driver's cognitive load is considered a good indication of alertness, but determining cognitive load is challenging and the acceptance of wire sensor solutions are not preferred in real-world driving scenarios. The recent development of a non-contact approach through image processing and decreasing hardware prices enables new solutions and there are several interesting features related to the driver's eyes that are currently explored in research. This paper presents a vision-based method to extract useful parameters from a driver's eye movement signals and manual feature extraction based on domain knowledge, as well as automatic feature extraction using deep learning architectures. Five machine learning models and three deep learning architectures are developed to classify a driver's cognitive load. The results show that the highest classification accuracy achieved is 92% by the support vector machine model with linear kernel function and 91% by the convolutional neural networks model. This non-contact technology can be a potential contributor in advanced driver assistive systems.

摘要

由于科技的进步,现代汽车具有高度的技术性,车内活动更加频繁,驾驶速度也更快;然而,统计数据显示,近年来由于驾驶员的不安全行为,道路死亡人数有所增加。因此,为了确保交通环境的安全,对于人类驾驶和自动驾驶汽车来说,保持驾驶员的警觉和清醒状态非常重要。驾驶员的认知负荷被认为是警觉性的一个很好的指标,但确定认知负荷具有挑战性,并且在现实驾驶场景中,人们不倾向于接受有线传感器解决方案。通过图像处理的非接触式方法的最新发展以及硬件价格的降低,为新的解决方案提供了可能,并且目前在研究中探索了与驾驶员眼睛相关的几个有趣特征。本文提出了一种基于驾驶员眼动信号的视觉方法,用于提取有用的参数,基于领域知识的手动特征提取,以及使用深度学习架构的自动特征提取。开发了五种机器学习模型和三种深度学习架构来对驾驶员的认知负荷进行分类。结果表明,支持向量机模型(线性核函数)的分类准确率最高,达到 92%,卷积神经网络模型的分类准确率为 91%。这项非接触技术可以成为先进的驾驶员辅助系统的潜在贡献者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/c28eace10b64/sensors-21-08019-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/34a7e90d2ad2/sensors-21-08019-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/3a90ebbcc1b0/sensors-21-08019-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/61eb29b93f5e/sensors-21-08019-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/54c40f274c3a/sensors-21-08019-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/a8fc8e8ce51d/sensors-21-08019-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/a829cfd62049/sensors-21-08019-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/5fa9c8f8e640/sensors-21-08019-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/3a02bd9027ab/sensors-21-08019-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/44bb81e93ba7/sensors-21-08019-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/28e0f795a54d/sensors-21-08019-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/7c9695fd932b/sensors-21-08019-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/5db6daf96274/sensors-21-08019-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/7957441890a6/sensors-21-08019-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/4038511f2c4f/sensors-21-08019-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/4160f5f05deb/sensors-21-08019-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/f37ec41804db/sensors-21-08019-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/50985549aa54/sensors-21-08019-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/c28eace10b64/sensors-21-08019-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/34a7e90d2ad2/sensors-21-08019-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/3a90ebbcc1b0/sensors-21-08019-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/61eb29b93f5e/sensors-21-08019-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/54c40f274c3a/sensors-21-08019-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/a8fc8e8ce51d/sensors-21-08019-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/a829cfd62049/sensors-21-08019-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/5fa9c8f8e640/sensors-21-08019-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/3a02bd9027ab/sensors-21-08019-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/44bb81e93ba7/sensors-21-08019-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/28e0f795a54d/sensors-21-08019-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/7c9695fd932b/sensors-21-08019-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/5db6daf96274/sensors-21-08019-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/7957441890a6/sensors-21-08019-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/4038511f2c4f/sensors-21-08019-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/4160f5f05deb/sensors-21-08019-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/f37ec41804db/sensors-21-08019-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/50985549aa54/sensors-21-08019-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e973/8659461/c28eace10b64/sensors-21-08019-g018.jpg

相似文献

[1]
Vision-Based Driver's Cognitive Load Classification Considering Eye Movement Using Machine Learning and Deep Learning.

Sensors (Basel). 2021-11-30

[2]
DRER: Deep Learning-Based Driver's Real Emotion Recognizer.

Sensors (Basel). 2021-3-19

[3]
A Hybrid Model for Driver Emotion Detection Using Feature Fusion Approach.

Int J Environ Res Public Health. 2022-3-6

[4]
Analysis of effects of driver's evasive action time on rear-end collision risk using a driving simulator.

J Safety Res. 2021-9

[5]
Deep Learning-Based Gaze Detection System for Automobile Drivers Using a NIR Camera Sensor.

Sensors (Basel). 2018-2-3

[6]
Estimation of Driver's Danger Level when Accessing the Center Console for Safe Driving.

Sensors (Basel). 2018-10-10

[7]
CBAM VGG16: An efficient driver distraction classification using CBAM embedded VGG16 architecture.

Comput Biol Med. 2024-9

[8]
Deep Learning for Detecting Multi-Level Driver Fatigue Using Physiological Signals: A Comprehensive Approach.

Sensors (Basel). 2023-9-29

[9]
Research on imaging method of driver's attention area based on deep neural network.

Sci Rep. 2022-9-30

[10]
Optical flow and driver's kinematics analysis for state of alert sensing.

Sensors (Basel). 2013-3-28

引用本文的文献

[1]
Prediction of intrinsic and extraneous cognitive load with oculometric and biometric indicators.

Sci Rep. 2025-2-12

[2]
Hyperparameter tuning using Lévy flight and interactive crossover-based reptile search algorithm for eye movement event classification.

Front Physiol. 2024-5-15

[3]
Machine learning-based cognitive load prediction model for AR-HUD to improve OSH of professional drivers.

Front Public Health. 2023

[4]
Vision-Based Eye Image Classification for Ophthalmic Measurement Systems.

Sensors (Basel). 2022-12-29

[5]
Investigating Methods for Cognitive Workload Estimation for Assistive Robots.

Sensors (Basel). 2022-9-9

[6]
Driver's Visual Attention Characteristics and Their Emotional Influencing Mechanism under Different Cognitive Tasks.

Int J Environ Res Public Health. 2022-4-21

本文引用的文献

[1]
Drowsiness and distraction while driving: A study based on smartphone app data.

J Safety Res. 2020-1-13

[2]
Eye Tracking and Head Movement Detection: A State-of-Art Survey.

IEEE J Transl Eng Health Med. 2013-11-6

[3]
Detecting driver drowsiness based on sensors: a review.

Sensors (Basel). 2012-12-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索