文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器学习的 AR-HUD 认知负荷预测模型,提高专业驾驶员的 OSH。

Machine learning-based cognitive load prediction model for AR-HUD to improve OSH of professional drivers.

机构信息

School of Mechanical and Electrical Engineering, Lingnan Normal University, Zhanjiang, China.

College of Education, Sehan University, Yeongam, Jeollanam-do, Republic of Korea.

出版信息

Front Public Health. 2023 Aug 3;11:1195961. doi: 10.3389/fpubh.2023.1195961. eCollection 2023.


DOI:10.3389/fpubh.2023.1195961
PMID:37601189
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10434776/
Abstract

MOTIVATION: Augmented reality head-up display (AR-HUD) interface design takes on critical significance in enhancing driving safety and user experience among professional drivers. However, optimizing the above-mentioned interfaces poses challenges, innovative methods are urgently required to enhance performance and reduce cognitive load. DESCRIPTION: A novel method was proposed, combining the IVPM method with a GA to optimize AR-HUD interfaces. Leveraging machine learning, the IVPM-GA method was adopted to predict cognitive load and iteratively optimize the interface design. RESULTS: Experimental results confirmed the superiority of IVPM-GA over the conventional BP-GA method. Optimized AR-HUD interfaces using IVPM-GA significantly enhanced the driving performance, and user experience was enhanced since 80% of participants rated the IVPM-GA interface as visually comfortable and less distracting. CONCLUSION: In this study, an innovative method was presented to optimize AR-HUD interfaces by integrating IVPM with a GA. IVPM-GA effectively reduced cognitive load, enhanced driving performance, and improved user experience for professional drivers. The above-described findings stress the significance of using machine learning and optimization techniques in AR-HUD interface design, with the aim of enhancing driver safety and occupational health. The study confirmed the practical implications of machine learning optimization algorithms for designing AR-HUD interfaces with reduced cognitive load and improved occupational safety and health (OSH) for professional drivers.

摘要

动机:增强现实平视显示器 (AR-HUD) 界面设计对于提高专业驾驶员的驾驶安全性和用户体验至关重要。然而,优化上述界面具有挑战性,需要创新方法来提高性能和降低认知负荷。

描述:提出了一种新方法,将 IVPM 方法与 GA 相结合,以优化 AR-HUD 界面。该方法采用机器学习,利用 IVPM-GA 预测认知负荷并迭代优化界面设计。

结果:实验结果证实了 IVPM-GA 优于传统的 BP-GA 方法。使用 IVPM-GA 优化的 AR-HUD 界面显著提高了驾驶性能,并且由于 80%的参与者认为 IVPM-GA 界面视觉舒适且干扰较小,因此用户体验得到了提升。

结论:本研究提出了一种通过将 IVPM 与 GA 相结合来优化 AR-HUD 界面的创新方法。IVPM-GA 有效地降低了认知负荷,提高了驾驶性能,改善了专业驾驶员的用户体验。上述发现强调了在 AR-HUD 界面设计中使用机器学习和优化技术的重要性,以提高驾驶员的安全性和职业健康。研究证实了机器学习优化算法在设计具有降低认知负荷和提高职业安全与健康 (OSH) 的 AR-HUD 界面方面的实际意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e95c/10434776/b4b2dd4f021d/fpubh-11-1195961-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e95c/10434776/44e39b7a94d0/fpubh-11-1195961-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e95c/10434776/4f224cd28dfc/fpubh-11-1195961-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e95c/10434776/f41590e58c03/fpubh-11-1195961-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e95c/10434776/d702f2c74561/fpubh-11-1195961-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e95c/10434776/c9551ddf8bfb/fpubh-11-1195961-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e95c/10434776/1f6aea6bf8a6/fpubh-11-1195961-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e95c/10434776/6d4506ac33f6/fpubh-11-1195961-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e95c/10434776/750006acdc9f/fpubh-11-1195961-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e95c/10434776/c2c2d7b0199e/fpubh-11-1195961-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e95c/10434776/b4b2dd4f021d/fpubh-11-1195961-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e95c/10434776/44e39b7a94d0/fpubh-11-1195961-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e95c/10434776/4f224cd28dfc/fpubh-11-1195961-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e95c/10434776/f41590e58c03/fpubh-11-1195961-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e95c/10434776/d702f2c74561/fpubh-11-1195961-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e95c/10434776/c9551ddf8bfb/fpubh-11-1195961-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e95c/10434776/1f6aea6bf8a6/fpubh-11-1195961-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e95c/10434776/6d4506ac33f6/fpubh-11-1195961-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e95c/10434776/750006acdc9f/fpubh-11-1195961-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e95c/10434776/c2c2d7b0199e/fpubh-11-1195961-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e95c/10434776/b4b2dd4f021d/fpubh-11-1195961-g010.jpg

相似文献

[1]
Machine learning-based cognitive load prediction model for AR-HUD to improve OSH of professional drivers.

Front Public Health. 2023

[2]
The impact of different AR-HUD virtual warning interfaces on the takeover performance and visual characteristics of autonomous vehicles.

Traffic Inj Prev. 2022

[3]
Assessing Distraction Potential of Augmented Reality Head-Up Displays for Vehicle Drivers.

Hum Factors. 2022-8

[4]
Navigating with Augmented Reality - How does it affect drivers' mental load?

Appl Ergon. 2021-7

[5]
Inattentional blindness to unexpected hazard in augmented reality head-up display assisted driving: The impact of the relative position between stimulus and augmented graph.

Traffic Inj Prev. 2023

[6]
Effects of a color gradient and emoji in AR-HUD warning interfaces in autonomous vehicles on takeover performance and driver emotions.

Traffic Inj Prev. 2024

[7]
AR DriveSim: An Immersive Driving Simulator for Augmented Reality Head-Up Display Research.

Front Robot AI. 2019-10-23

[8]
The influence of cognition and age on accommodation, detection rate and response times when using a car head-up display (HUD).

Ophthalmic Physiol Opt. 1998-5

[9]
Augmented Reality Interface Design Approaches for Goal-directed and Stimulus-driven Driving Tasks.

IEEE Trans Vis Comput Graph. 2018-11

[10]
Driver Behavior and Performance with Augmented Reality Pedestrian Collision Warning: An Outdoor User Study.

IEEE Trans Vis Comput Graph. 2018-4

本文引用的文献

[1]
Inattentional blindness to unexpected hazard in augmented reality head-up display assisted driving: The impact of the relative position between stimulus and augmented graph.

Traffic Inj Prev. 2023

[2]
: A Multimodal Dataset for Cognitive Load Estimation.

Sensors (Basel). 2022-12-28

[3]
A real-time driver fatigue identification method based on GA-GRNN.

Front Public Health. 2022

[4]
Dashboard Layout Effects on Drivers' Searching Performance and Heart Rate: Experimental Investigation and Prediction.

Front Public Health. 2022

[5]
Vision-Based Driver's Cognitive Load Classification Considering Eye Movement Using Machine Learning and Deep Learning.

Sensors (Basel). 2021-11-30

[6]
REDECA: A Novel Framework to Review Artificial Intelligence and Its Applications in Occupational Safety and Health.

Int J Environ Res Public Health. 2021-6-22

[7]
Feature Selection Model based on EEG Signals for Assessing the Cognitive Workload in Drivers.

Sensors (Basel). 2020-10-17

[8]
Detection and prediction of driver drowsiness using artificial neural network models.

Accid Anal Prev. 2017-12-6

[9]
Fully Convolutional Networks for Semantic Segmentation.

IEEE Trans Pattern Anal Mach Intell. 2016-5-24

[10]
[Multi-spectral thermometry based on GA-BP algorithm].

Guang Pu Xue Yu Guang Pu Fen Xi. 2007-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索