Yang Bo, Gao Lanxing, Xue Miaoxuan, Wang Haihe, Hou Yanqing, Luo Yingchun, Xiao Han, Hu Hailiang, Cui Can, Wang Huanjiang, Zhang Jianhui, Li Yu-Feng, Xie Gang, Tong Xin, Xie Yadian
Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.
School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550014, China.
Materials (Basel). 2021 Nov 30;14(23):7356. doi: 10.3390/ma14237356.
Carbon nano-materials have been widely used in many fields due to their electron transport, mechanics, and gas adsorption properties. This paper introduces the structure and properties of carbon nano-materials the preparation of carbon nano-materials by chemical vapor deposition method (CVD)-which is one of the most common preparation methods-and reaction simulation. A major factor affecting the material structure is its preparation link. Different preparation methods or different conditions will have a great impact on the structure and properties of the material (mechanical properties, electrical properties, magnetism, etc.). The main influencing factors (precursor, substrate, and catalyst) of carbon nano-materials prepared by CVD are summarized. Through simulation, the reaction can be optimized and the growth mode of substances can be controlled. Currently, numerical simulations of the CVD process can be utilized in two ways: changing the CVD reactor structure and observing CVD chemical reactions. Therefore, the development and research status of computational fluid dynamics (CFD) for CVD are summarized, as is the potential of combining experimental studies and numerical simulations to achieve and optimize controllable carbon nano-materials growth.
碳纳米材料因其电子传输、力学和气体吸附特性而在许多领域得到广泛应用。本文介绍了碳纳米材料的结构与特性、通过化学气相沉积法(CVD)制备碳纳米材料——这是最常见的制备方法之一——以及反应模拟。影响材料结构的一个主要因素是其制备环节。不同的制备方法或不同的条件会对材料的结构和特性(力学性能、电学性能、磁性等)产生很大影响。总结了通过CVD制备碳纳米材料的主要影响因素(前驱体、基底和催化剂)。通过模拟,可以优化反应并控制物质的生长模式。目前,CVD过程的数值模拟可以通过两种方式加以利用:改变CVD反应器结构和观察CVD化学反应。因此,总结了用于CVD的计算流体动力学(CFD)的发展和研究现状,以及将实验研究与数值模拟相结合以实现并优化可控碳纳米材料生长的潜力。