Suppr超能文献

ZmPLD3 的功能丧失等位基因导致玉米单倍体的诱导。

Loss-of-function alleles of ZmPLD3 cause haploid induction in maize.

机构信息

State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, P. R. China.

National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, P. R. China.

出版信息

Nat Plants. 2021 Dec;7(12):1579-1588. doi: 10.1038/s41477-021-01037-2. Epub 2021 Dec 9.

Abstract

Doubled haploid technology has been widely applied to multiple plant species and is recognized as one of the most important technologies for improving crop breeding efficiency. Although mutations in MATRILINEAL/Zea mays PHOSPHOLIPASE A1/NOT LIKE DAD (MTL/ZmPLA1/NLD) and Zea mays DOMAIN OF UNKNOWN FUNCTION 679 MEMBRANE PROTEIN (ZmDMP) have been shown to generate haploids in maize, knowledge of the genetic basis of haploid induction (HI) remains incomplete. Therefore, cloning of new genes underlying HI is important for further elucidating its genetic architecture. Here, we found that loss-of-function mutations of Zea mays PHOSPHOLIPASE D3 (ZmPLD3), one of the members from the phospholipase D subfamily, could trigger maternal HI in maize. ZmPLD3 was identified through a reverse genetic strategy based on analysis of pollen-specifically expressed phospholipases, followed by validation through the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR-Cas9) system. Mutations of ZmPLD3 resulted in a haploid induction rate (HIR) similar to that of mtl/zmpla1/nld and showed synergistic effects rather than functional redundancy on tripling the HIR (from 1.19% to 4.13%) in the presence of mtl/zmpla1/nld. RNA-seq profiling of mature pollen indicated that a large number of pollen-specific differentially expressed genes were enriched in processes related to gametogenesis development, such as pollen tube development and cell communication, during the double-fertilization process. In addition, ZmPLD3 is highly conserved among cereals, highlighting the potential application of these in vivo haploid-inducer lines for other important crop plant species. Collectively, our discovery identifies a novel gene underlying in vivo maternal HI and provides possibility of breeding haploid inducers with further improved HIR.

摘要

双倍单倍体技术已广泛应用于多种植物物种,被认为是提高作物育种效率的最重要技术之一。尽管 MATRILINEAL/Zea mays PHOSPHOLIPASE A1/NOT LIKE DAD (MTL/ZmPLA1/NLD) 和 Zea mays DOMAIN OF UNKNOWN FUNCTION 679 MEMBRANE PROTEIN (ZmDMP) 的突变已被证明可在玉米中产生单倍体,但单倍体诱导 (HI) 的遗传基础仍不完全清楚。因此,克隆新的 HI 相关基因对于进一步阐明其遗传结构非常重要。在这里,我们发现 Zea mays PHOSPHOLIPASE D3 (ZmPLD3) 的功能丧失突变,该基因是磷脂酶 D 亚家族的成员之一,可以触发玉米中的母性 HI。ZmPLD3 是通过基于分析花粉特异性表达的磷脂酶的反向遗传策略鉴定的,然后通过聚类规则间隔短回文重复序列/CRISPR 相关蛋白 9 (CRISPR-Cas9) 系统进行验证。ZmPLD3 的突变导致的单倍体诱导率 (HIR) 与 mtl/zmpla1/nld 相似,并表现出协同作用,而不是在 mtl/zmpla1/nld 存在时功能冗余,将 HIR 提高三倍(从 1.19%提高到 4.13%)。成熟花粉的 RNA-seq 分析表明,在双受精过程中,大量花粉特异性差异表达基因富集在配子体发育相关过程中,例如花粉管发育和细胞通讯。此外,ZmPLD3 在谷物中高度保守,突出了这些体内单倍体诱导系在其他重要作物物种中的潜在应用。总之,我们的发现确定了一个新的体内母性 HI 相关基因,并为进一步提高 HIR 提供了培育单倍体诱导剂的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/518d/8677622/5196d3dc174e/41477_2021_1037_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验