Suppr超能文献

优化算法的维度与收敛性之间的关系:使用 PEPSSBI 对基于数据驱动的归一化和缩放因子方法的比较。

Relationship Between Dimensionality and Convergence of Optimization Algorithms: A Comparison Between Data-Driven Normalization and Scaling Factor-Based Methods Using PEPSSBI.

机构信息

MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK.

Department of Medical Genetics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.

出版信息

Methods Mol Biol. 2022;2385:91-115. doi: 10.1007/978-1-0716-1767-0_5.

Abstract

Ordinary differential equation models are used to represent intracellular signaling pathways in silico, aiding and guiding biological experiments to elucidate intracellular regulation. To construct such quantitative and predictive models of intracellular interactions, unknown parameters need to be estimated. Most of biological data are expressed in relative or arbitrary units, raising the question of how to compare model simulations with data. It has recently been shown that for models with large number of unknown parameters, fitting algorithms using a data-driven normalization of the simulations (DNS) performs best in terms of the convergence time and parameter identifiability. DNS approach compares model simulations and corresponding data both normalized by the same normalization procedure, without requiring additional parameters to be estimated, as necessary for widely used scaling factor-based methods. However, currently there is no parameter estimation software that directly supports DNS. In this chapter, we show how to apply DNS to dynamic models of systems and synthetic biology using PEPSSBI (Parameter Estimation Pipeline for Systems and Synthetic Biology). PEPSSBI is the first software that supports DNS, through algorithmically supported data normalization and objective function construction. PEPSSBI also supports model import using SBML and repeated parameter estimation runs executed in parallel either on a personal computer or a multi-CPU cluster.

摘要

常微分方程模型用于在计算机中表示细胞内信号通路,辅助和指导生物实验以阐明细胞内调控。为了构建这种定量和预测性的细胞内相互作用模型,需要估计未知参数。大多数生物数据以相对或任意单位表示,这就提出了如何将模型模拟与数据进行比较的问题。最近已经表明,对于具有大量未知参数的模型,使用基于数据驱动的模拟归一化(DNS)的拟合算法在收敛时间和参数可识别性方面表现最佳。DNS 方法通过相同的归一化过程对模型模拟和相应的数据进行比较,而无需像广泛使用的基于比例因子的方法那样估计额外的参数。然而,目前还没有直接支持 DNS 的参数估计软件。在本章中,我们将展示如何使用 PEPSSBI(系统和合成生物学的参数估计管道)将 DNS 应用于系统和合成生物学的动态模型。PEPSSBI 是第一个支持 DNS 的软件,它通过算法支持的数据归一化和目标函数构建来支持 DNS。PEPSSBI 还支持使用 SBML 导入模型,并支持在个人计算机或多 CPU 集群上并行执行重复的参数估计运行。

相似文献

2
SBML-PET: a Systems Biology Markup Language-based parameter estimation tool.
Bioinformatics. 2006 Nov 1;22(21):2704-5. doi: 10.1093/bioinformatics/btl443. Epub 2006 Aug 22.
4
Performance of objective functions and optimisation procedures for parameter estimation in system biology models.
NPJ Syst Biol Appl. 2017 Aug 8;3:20. doi: 10.1038/s41540-017-0023-2. eCollection 2017.
5
Recipes for Analysis of Molecular Networks Using the Data2Dynamics Modeling Environment.
Methods Mol Biol. 2019;1945:341-362. doi: 10.1007/978-1-4939-9102-0_16.
6
Parameter estimation of dynamic biological network models using integrated fluxes.
BMC Syst Biol. 2014 Nov 18;8:127. doi: 10.1186/s12918-014-0127-x.
7
Calculating all multiple parameter solutions of ODE models to avoid biological misinterpretations.
Math Biosci Eng. 2019 Jul 11;16(6):6438-6453. doi: 10.3934/mbe.2019322.
8
Piecewise parameter estimation for stochastic models in COPASI.
Bioinformatics. 2016 May 15;32(10):1586-8. doi: 10.1093/bioinformatics/btv759. Epub 2016 Jan 18.
9
Structural Identifiability of Dynamic Systems Biology Models.
PLoS Comput Biol. 2016 Oct 28;12(10):e1005153. doi: 10.1371/journal.pcbi.1005153. eCollection 2016 Oct.
10
Mini-batch optimization enables training of ODE models on large-scale datasets.
Nat Commun. 2022 Jan 10;13(1):34. doi: 10.1038/s41467-021-27374-6.

本文引用的文献

1
Scalable Inference of Ordinary Differential Equation Models of Biochemical Processes.
Methods Mol Biol. 2019;1883:385-422. doi: 10.1007/978-1-4939-8882-2_16.
2
PESTO: Parameter EStimation TOolbox.
Bioinformatics. 2018 Feb 15;34(4):705-707. doi: 10.1093/bioinformatics/btx676.
3
Performance of objective functions and optimisation procedures for parameter estimation in system biology models.
NPJ Syst Biol Appl. 2017 Aug 8;3:20. doi: 10.1038/s41540-017-0023-2. eCollection 2017.
4
SBpipe: a collection of pipelines for automating repetitive simulation and analysis tasks.
BMC Syst Biol. 2017 Apr 10;11(1):46. doi: 10.1186/s12918-017-0423-3.
5
AMIGO2, a toolbox for dynamic modeling, optimization and control in systems biology.
Bioinformatics. 2016 Nov 1;32(21):3357-3359. doi: 10.1093/bioinformatics/btw411. Epub 2016 Jul 4.
7
Robust and efficient parameter estimation in dynamic models of biological systems.
BMC Syst Biol. 2015 Oct 29;9:74. doi: 10.1186/s12918-015-0219-2.
8
Data2Dynamics: a modeling environment tailored to parameter estimation in dynamical systems.
Bioinformatics. 2015 Nov 1;31(21):3558-60. doi: 10.1093/bioinformatics/btv405. Epub 2015 Jul 3.
9
BioPreDyn-bench: a suite of benchmark problems for dynamic modelling in systems biology.
BMC Syst Biol. 2015 Feb 20;9:8. doi: 10.1186/s12918-015-0144-4.
10
ELISA in the multiplex era: potentials and pitfalls.
Proteomics Clin Appl. 2015 Apr;9(3-4):406-22. doi: 10.1002/prca.201400130. Epub 2015 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验