MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK.
Department of Medical Genetics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
Methods Mol Biol. 2022;2385:91-115. doi: 10.1007/978-1-0716-1767-0_5.
Ordinary differential equation models are used to represent intracellular signaling pathways in silico, aiding and guiding biological experiments to elucidate intracellular regulation. To construct such quantitative and predictive models of intracellular interactions, unknown parameters need to be estimated. Most of biological data are expressed in relative or arbitrary units, raising the question of how to compare model simulations with data. It has recently been shown that for models with large number of unknown parameters, fitting algorithms using a data-driven normalization of the simulations (DNS) performs best in terms of the convergence time and parameter identifiability. DNS approach compares model simulations and corresponding data both normalized by the same normalization procedure, without requiring additional parameters to be estimated, as necessary for widely used scaling factor-based methods. However, currently there is no parameter estimation software that directly supports DNS. In this chapter, we show how to apply DNS to dynamic models of systems and synthetic biology using PEPSSBI (Parameter Estimation Pipeline for Systems and Synthetic Biology). PEPSSBI is the first software that supports DNS, through algorithmically supported data normalization and objective function construction. PEPSSBI also supports model import using SBML and repeated parameter estimation runs executed in parallel either on a personal computer or a multi-CPU cluster.
常微分方程模型用于在计算机中表示细胞内信号通路,辅助和指导生物实验以阐明细胞内调控。为了构建这种定量和预测性的细胞内相互作用模型,需要估计未知参数。大多数生物数据以相对或任意单位表示,这就提出了如何将模型模拟与数据进行比较的问题。最近已经表明,对于具有大量未知参数的模型,使用基于数据驱动的模拟归一化(DNS)的拟合算法在收敛时间和参数可识别性方面表现最佳。DNS 方法通过相同的归一化过程对模型模拟和相应的数据进行比较,而无需像广泛使用的基于比例因子的方法那样估计额外的参数。然而,目前还没有直接支持 DNS 的参数估计软件。在本章中,我们将展示如何使用 PEPSSBI(系统和合成生物学的参数估计管道)将 DNS 应用于系统和合成生物学的动态模型。PEPSSBI 是第一个支持 DNS 的软件,它通过算法支持的数据归一化和目标函数构建来支持 DNS。PEPSSBI 还支持使用 SBML 导入模型,并支持在个人计算机或多 CPU 集群上并行执行重复的参数估计运行。