Liu Yang, Gunawan Rudiyanto
Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Perlog-Weg 1, Zurich, 8093, Switzerland.
BMC Syst Biol. 2014 Nov 18;8:127. doi: 10.1186/s12918-014-0127-x.
Parameter estimation is often the bottlenecking step in biological system modeling. For ordinary differential equation (ODE) models, the challenge in this estimation has been attributed to not only the lack of parameter identifiability, but also computational issues such as finding globally optimal parameter estimates over highly multidimensional search space. Recent methods using incremental estimation approach could alleviate the computational difficulty by performing the parameter estimation one-reaction-at-a-time. However, incremental estimation strategies usually require data smoothing and are known to produce biased parameter estimates.
In this article, we presented a new parameter estimation method called integrated flux parameter estimation (IFPE). We employed the integral form of the ODE such that we could compute the integral of reaction fluxes from time-series concentration data without data smoothing. Here, we formulated the parameter estimation as a nested optimization problem. In the outer optimization, we performed a minimization of model prediction errors over parameters associated with a subset of reactions labeled as independent. The dimension of the independent reaction subset was equal to the degrees of freedom in the calculation of integrated fluxes (IF) from concentration data. We selected the independent reactions such that given their IF values, the IFs of the remaining (dependent) reactions could be uniquely determined. Meanwhile, in the inner optimization, we estimated the model parameters associated with the dependent reactions, one-reaction-at-a-time, by minimizing the dependent IF prediction errors. We demonstrated the performance of the IFPE method using two case studies: a generalized mass action model of a branched pathway and a lin-log ODE model of Lactococcus lactis glycolytic pathway.
The IFPE significantly outperformed standard simultaneous parameter estimation in terms of computational efficiency and scaling. In comparison to incremental parameter estimation (IPE) method, the IFPE produced parameter estimates with significantly lower bias and did not require time-series data smoothing. The advantages of IFPE over the IPE however came at the cost of a small increase in the computational time.
参数估计通常是生物系统建模中的瓶颈步骤。对于常微分方程(ODE)模型,这种估计中的挑战不仅归因于缺乏参数可识别性,还归因于计算问题,例如在高度多维的搜索空间中找到全局最优参数估计。最近使用增量估计方法的研究可以通过一次一个反应地进行参数估计来缓解计算困难。然而,增量估计策略通常需要数据平滑,并且已知会产生有偏差的参数估计。
在本文中,我们提出了一种新的参数估计方法,称为积分通量参数估计(IFPE)。我们采用了ODE的积分形式,这样就可以从时间序列浓度数据中计算反应通量的积分,而无需数据平滑。在这里,我们将参数估计表述为一个嵌套优化问题。在外部优化中,我们对与标记为独立的反应子集相关的参数进行模型预测误差最小化。独立反应子集的维度等于从浓度数据计算积分通量(IF)时的自由度。我们选择独立反应,使得给定它们的IF值,可以唯一确定其余(依赖)反应的IF。同时,在内部优化中,我们通过最小化依赖IF预测误差,一次一个反应地估计与依赖反应相关的模型参数。我们使用两个案例研究展示了IFPE方法的性能:一个分支途径的广义质量作用模型和乳酸乳球菌糖酵解途径的线性对数ODE模型。
IFPE在计算效率和扩展性方面明显优于标准的同时参数估计。与增量参数估计(IPE)方法相比,IFPE产生的参数估计偏差显著更低,并且不需要时间序列数据平滑。然而,IFPE相对于IPE的优势是以计算时间略有增加为代价的。