Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
Pac Symp Biocomput. 2022;27:97-108.
Brain imaging genetics is an emerging research field aiming to reveal the genetic basis of brain traits captured by imaging data. Inspired by heritability analysis, the concept of morphometricity was recently introduced to assess trait association with whole brain morphology. In this study, we extend the concept of morphometricity from its original definition at the whole brain level to a more focal level based on a region of interest (ROI). We propose a novel framework to identify the SNP-ROI association via regional morphometricity estimation of each studied single nucleotide polymorphism (SNP). We perform an empirical study on the structural MRI and genotyping data from a landmark Alzheimer's disease (AD) biobank; and yield promising results. Our findings indicate that the AD-related SNPs have higher overall regional morphometricity estimates than the SNPs not yet related to AD. This observation suggests that the variance of AD SNPs can be explained more by regional morphometric features than non-AD SNPs, supporting the value of imaging traits as targets in studying AD genetics. Also, we identified 11 ROIs, where the AD/non-AD SNPs and significant/insignificant morphometricity estimation of the corresponding SNPs in these ROIs show strong dependency. Supplementary motor area (SMA) and dorsolateral prefrontal cortex (DPC) are enriched by these ROIs. Our results also demonstrate that using all the detailed voxel-level measures within the ROI to incorporate morphometric information outperforms using only a single average ROI measure, and thus provides improved power to detect imaging genetic associations.
脑影像遗传学是一个新兴的研究领域,旨在揭示影像学数据所捕捉的大脑特征的遗传基础。受遗传分析的启发,最近引入了形态测量学的概念,以评估特征与全脑形态的关联。在这项研究中,我们将形态测量学的概念从全脑水平的原始定义扩展到基于感兴趣区域(ROI)的更局部的水平。我们提出了一种新的框架,通过对每个研究的单核苷酸多态性(SNP)进行区域形态测量来识别 SNP-ROI 关联。我们对来自一个有里程碑意义的阿尔茨海默病(AD)生物库的结构 MRI 和基因分型数据进行了实证研究,并取得了有前景的结果。我们的发现表明,与 AD 相关的 SNP 的总体区域形态测量估计值高于尚未与 AD 相关的 SNP。这一观察结果表明,AD SNP 的方差可以更多地通过区域形态特征来解释,而不是非 AD SNP,这支持了将影像学特征作为 AD 遗传学研究目标的价值。此外,我们确定了 11 个 ROI,在这些 ROI 中,AD/非 AD SNP 以及相应 SNP 的显著/不显著形态测量估计值之间存在很强的依赖性。运动前区(SMA)和背外侧前额叶皮层(DPC)是这些 ROI 的富集区。我们的结果还表明,使用 ROI 内的所有详细体素水平测量值来纳入形态测量信息优于仅使用单个平均 ROI 测量值,从而提供了更高的检测影像学遗传关联的能力。