Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Pac Symp Biocomput. 2022;27:187-198.
Quantitative Structure-Activity Relationship (QSAR) modeling is a common computational technique for predicting chemical toxicity, but a lack of new methodological innovations has impeded QSAR performance on many tasks. We show that contemporary QSAR modeling for predictive toxicology can be substantially improved by incorporating semantic graph data aggregated from open-access public databases, and analyzing those data in the context of graph neural networks (GNNs). Furthermore, we introspect the GNNs to demonstrate how they can lead to more interpretable applications of QSAR, and use ablation analysis to explore the contribution of different data elements to the final models' performance.
定量构效关系(QSAR)建模是一种常用于预测化学毒性的计算技术,但由于缺乏新的方法学创新,在许多任务中都阻碍了 QSAR 的性能。我们表明,通过结合从开放获取公共数据库中聚合的语义图数据,并在图神经网络(GNN)的上下文中分析这些数据,当代预测毒理学的 QSAR 建模可以得到极大的改进。此外,我们还对 GNN 进行了内省分析,以证明它们如何导致更具可解释性的 QSAR 应用,并使用消融分析来探索不同数据元素对最终模型性能的贡献。