Suppr超能文献

将人工智能模型用于预测紧急剖宫产:克服院际差异带来的挑战。

Transporting an Artificial Intelligence Model to Predict Emergency Cesarean Delivery: Overcoming Challenges Posed by Interfacility Variation.

机构信息

The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.

Division of Obstetrics & Gynecology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.

出版信息

J Med Internet Res. 2021 Dec 10;23(12):e28120. doi: 10.2196/28120.

Abstract

Research using artificial intelligence (AI) in medicine is expected to significantly influence the practice of medicine and the delivery of health care in the near future. However, for successful deployment, the results must be transported across health care facilities. We present a cross-facilities application of an AI model that predicts the need for an emergency caesarean during birth. The transported model showed benefit; however, there can be challenges associated with interfacility variation in reporting practices.

摘要

人工智能(AI)在医学中的应用研究预计将在不久的将来对医学实践和医疗保健的提供产生重大影响。然而,为了成功部署,结果必须在医疗机构之间传输。我们展示了一个人工智能模型在预测分娩时紧急剖宫产需求方面的跨机构应用。该传输模型显示出了益处;然而,在报告实践方面,医疗机构之间的差异可能会带来挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d66/8709908/dab32c18dd84/jmir_v23i12e28120_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验