Michalitsi Kalliopi, Metallinou Dimitra, Diamanti Athina, Georgakopoulou Vasiliki E, Kagkouras Iraklis, Tsoukala Eleni, Sarantaki Antigoni
Department of Midwifery, University of West Attica, Athens, GRC.
Department of Pathophysiology/Pulmonology, Laiko General Hospital, Athens, GRC.
Cureus. 2024 Sep 10;16(9):e69115. doi: 10.7759/cureus.69115. eCollection 2024 Sep.
The integration of artificial intelligence (AI) into obstetric care offers significant potential to enhance clinical decision-making and optimize maternal and neonatal outcomes. Traditional prediction methods for mode of delivery often rely on subjective clinical judgment and limited statistical models, which may not fully capture complex patient data. This systematic review aims to evaluate the current state of research on AI applications in predicting the mode of delivery, comparing the performance of AI models with traditional methods, and identifying gaps for future research. A comprehensive literature search was conducted across PubMed, Google Scholar, Web of Science, and Scopus databases, covering publications from January 2010 to July 2024. Inclusion criteria were studies employing AI techniques to predict the mode of delivery, published in peer-reviewed journals, and involving human subjects. Studies were assessed for quality using the Prediction Model Risk of Bias Assessment Tool (PROBAST), and data were synthesized narratively due to heterogeneity. In total, 18 studies met the inclusion criteria, employing various AI models such as logistic regression, random forest, gradient boosting, and neural networks. Sample sizes ranged from 40 to 94,480 participants across diverse geographic settings. AI models demonstrated high accuracy rates, often exceeding 90%, and strong predictive metrics (area under the curve (AUC) values from 0.745 to 0.932). Key predictors included maternal age, gravidity, parity, gestational age, labor induction type, and fetal weight. Notable models like the Adana System and Categorical Boosting (CatBoost, Yandex LLC, Moscow, Russia) highlighted the effectiveness of AI in enhancing prediction accuracy and supporting clinical decisions. AI models significantly outperform traditional statistical methods in predicting the mode of delivery, providing a robust tool for obstetric care. Future research should focus on standardizing data collection, improving model interpretability, addressing ethical concerns, and ensuring fairness in AI predictions to enhance clinical trust and application.
将人工智能(AI)整合到产科护理中,具有显著潜力来改善临床决策并优化孕产妇和新生儿结局。传统的分娩方式预测方法通常依赖主观临床判断和有限的统计模型,可能无法充分捕捉复杂的患者数据。本系统综述旨在评估人工智能在预测分娩方式方面的研究现状,比较人工智能模型与传统方法的性能,并确定未来研究的差距。我们在PubMed、谷歌学术、科学网和Scopus数据库中进行了全面的文献检索,涵盖2010年1月至2024年7月发表的文献。纳入标准为采用人工智能技术预测分娩方式、发表在同行评审期刊上且涉及人类受试者的研究。使用预测模型偏倚风险评估工具(PROBAST)对研究质量进行评估,由于存在异质性,数据采用叙述性综合分析。共有18项研究符合纳入标准,采用了各种人工智能模型,如逻辑回归、随机森林、梯度提升和神经网络。样本量从40到94480名参与者不等,涵盖不同地理区域。人工智能模型显示出高准确率,通常超过90%,且具有强大的预测指标(曲线下面积(AUC)值从0.745到0.932)。关键预测因素包括产妇年龄、孕次、产次、孕周、引产类型和胎儿体重。像阿达纳系统和分类提升(CatBoost,俄罗斯莫斯科的Yandex LLC)等著名模型突出了人工智能在提高预测准确性和支持临床决策方面的有效性。在预测分娩方式方面,人工智能模型显著优于传统统计方法,为产科护理提供了一个强大的工具。未来的研究应侧重于标准化数据收集、提高模型可解释性、解决伦理问题以及确保人工智能预测的公平性,以增强临床信任和应用。
Cochrane Database Syst Rev. 2022-2-1
Technol Health Care. 2024
J Med Internet Res. 2023-10-20
J Prosthodont. 2024-7
Comput Struct Biotechnol J. 2021
BMC Pregnancy Childbirth. 2025-7-2
Cureus. 2024-7-3
Int J Womens Health. 2024-5-22
Int J Gynaecol Obstet. 2024-10
Curr Res Physiol. 2023-5-19
Front Endocrinol (Lausanne). 2023
Comput Biol Chem. 2023-6