Suppr超能文献

使用 EEG 谱和连通性测量对亚临床抑郁症进行分类。

Classifying subclinical depression using EEG spectral and connectivity measures.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2050-2053. doi: 10.1109/EMBC46164.2021.9630044.

Abstract

Detecting depression on its early stages helps preventing the onset of severe depressive episodes. In this study, we propose an automatic classification pipeline to detect subclinical depression (i.e., dysphoria) through the electroencephalography (EEG) signal. To this aim, we recorded the EEG signals in resting condition from 26 female participants with dysphoria and 38 female controls. The EEG signals were processed to extract several spectral and functional connectivity features to feed a nonlinear Support Vector Machine (SVM) classifier embedded with a Recursive Feature Elimination (RFE) algorithm. Our recognition pipeline obtained a maximum classification accuracy of 83.91% in recognizing dysphoria patients with a combination of connectivity and spectral measures. Moreover, an accuracy of 76.11% was achieved with only the 4 most informative functional connections, suggesting a central role of cortical connectivity in the theta band for early depression recognition. The present study can facilitate the diagnosis of subclinical conditions of depression and may provide reliable indicators of depression for the clinical community.

摘要

早期发现抑郁症有助于预防重度抑郁发作。在这项研究中,我们提出了一种自动分类管道,通过脑电图(EEG)信号来检测亚临床抑郁症(即心境恶劣)。为此,我们从 26 名患有心境恶劣的女性参与者和 38 名女性对照者中记录了静息状态下的 EEG 信号。对 EEG 信号进行了处理,以提取多个频谱和功能连接特征,为嵌入递归特征消除(RFE)算法的非线性支持向量机(SVM)分类器提供输入。我们的识别管道在识别心境恶劣患者时,通过连接和频谱测量的组合,获得了 83.91%的最大分类准确率。此外,仅使用 4 个最具信息量的功能连接,就可达到 76.11%的准确率,这表明皮质连接在 theta 波段对早期抑郁症识别具有核心作用。本研究可以促进亚临床抑郁症的诊断,并为临床提供可靠的抑郁症指标。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验