Suppr超能文献

使用脑电图诊断抑郁症的机器学习方法:综述

Machine learning approaches for diagnosing depression using EEG: A review.

作者信息

Liu Yuan, Pu Changqin, Xia Shan, Deng Dingyu, Wang Xing, Li Mengqian

机构信息

Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Donghu District, Nanchang 330006, Jiangxi Province, China.

Queen Mary College, Nanchang University, Nanchang 330031, Jiangxi Province, China.

出版信息

Transl Neurosci. 2022 Aug 12;13(1):224-235. doi: 10.1515/tnsci-2022-0234. eCollection 2022 Jan 1.

Abstract

Depression has become one of the most crucial public health issues, threatening the quality of life of over 300 million people throughout the world. Nevertheless, the clinical diagnosis of depression is now still hampered by behavioral diagnostic methods. Due to the lack of objective laboratory diagnostic criteria, accurate identification and diagnosis of depression remained elusive. With the rise of computational psychiatry, a growing number of studies have combined resting-state electroencephalography with machine learning (ML) to alleviate diagnosis of depression in recent years. Despite the exciting results, these were worrisome of these studies. As a result, ML prediction models should be continuously improved to better screen and diagnose depression. Finally, this technique would be used for the diagnosis of other psychiatric disorders in the future.

摘要

抑郁症已成为最关键的公共卫生问题之一,威胁着全球超过3亿人的生活质量。然而,目前抑郁症的临床诊断仍受到行为诊断方法的阻碍。由于缺乏客观的实验室诊断标准,抑郁症的准确识别和诊断仍然难以实现。随着计算精神病学的兴起,近年来越来越多的研究将静息态脑电图与机器学习(ML)相结合,以辅助抑郁症的诊断。尽管取得了令人振奋的结果,但这些研究仍存在一些问题。因此,ML预测模型应不断改进,以更好地筛查和诊断抑郁症。最终,这项技术未来将用于其他精神疾病的诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/338d/9375981/109bb1985f01/j_tnsci-2022-0234-fig001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验