Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2067-2070. doi: 10.1109/EMBC46164.2021.9629627.
We aim to evaluate the feasibility and performance of a novel hot flash (HF) classification algorithm based on multisensor features integration using commercial wearable sensors. First, we processed feature sets from wrist-based multi-sensor data (photoplethysmography, motion, temperature, skin conductance and). Then, we classified (Decision Tree) physiological-recorded HFs (N=27) recorded from three menopause women, and we assessed the algorithm performance against gold-standard HF expert evaluation. The results indicated that while skin conductance features alone explain most of the variance (~65%) in HF classification, the multi-sensor approach achieved above 90% sensitivity at 95.6% specificity in HF classification and showed advantages under conditions of signal corruption and different biobehavioral states (sleep vs wake). The proposed new multi-sensor approach showed being promising in HF classification using common commercially-available wearable sensors and target locations.Clinical Relevance- The development of "user-centered" accurate, automatic detection systems for HFs can advance the measurement and treatment of HFs.
我们旨在评估一种基于多传感器特征集成的新型热潮(HF)分类算法的可行性和性能,该算法使用商用可穿戴传感器。首先,我们处理了来自腕部多传感器数据(光体积描记法、运动、温度、皮肤电导和)的特征集。然后,我们对来自三名更年期女性的生理记录 HF(N=27)进行了(决策树)分类,并根据 HF 专家评估的金标准评估了算法性能。结果表明,虽然单独的皮肤电导特征可以解释 HF 分类中的大部分方差(~65%),但多传感器方法在 HF 分类中实现了超过 95.6%的特异性和 90%的敏感性,并且在信号污染和不同生物行为状态(睡眠与清醒)下表现出优势。拟议的新多传感器方法在使用常见的商用可穿戴传感器和目标位置的 HF 分类中显示出了很大的潜力。临床相关性——为热潮开发“以用户为中心”的准确、自动检测系统可以推进热潮的测量和治疗。