Suppr超能文献

基于事件相关电位的特征对于应用于基于机器学习的模型的重要性,该模型应用于在Oddball 任务中的单次试验数据。

Importance of the Features of Event-Related Potentials Used for a Machine Learning-Based Model Applied to Single-Trial Data during Oddball Task.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2123-2126. doi: 10.1109/EMBC46164.2021.9629947.

Abstract

In this study, a method for assessing the human state and brain-machine interface (BMI) has been developed using event-related potentials (ERPs). Most of these algorithms are classified based on the ERP characteristics. To observe the characteristics of ERPs, an averaging method using electroencephalography (EEG) signals cut out by time-locking to the event for each condition is required. To date, several classification methods using only single-trial EEG signals have been studied. In some cases, the machine learning models were used for the classifications; however, the relationship between the constructed model and the characteristics of ERPs remains unclear. In this study, the LightGBM model was constructed for each individual to classify a single-trial waveform and visualize the relationship between these features and the characteristics of ERPs. The features used in the model were the average values and standard deviation of the EEG amplitude with a time width of 10 ms. The best area under the curve (AUC) score was 0.92, but, in some cases, the AUC scores were low. Large individual differences in AUC scores were observed. In each case, on checking the importance of the features, high importance was shown at the 10-ms time width section, where a large difference was observed in ERP waveforms between the target and the non-target. Since the model constructed in this study was found to reflect the characteristics of ERP, as the next step, we would like to try to improve the discrimination performance by using stimuli that the participants can concentrate on with interest.

摘要

在这项研究中,我们使用事件相关电位(ERP)开发了一种评估人类状态和脑机接口(BMI)的方法。这些算法大多数是基于 ERP 特征进行分类的。为了观察 ERP 的特征,需要使用针对每个条件的时间锁定脑电图(EEG)信号进行平均的方法。迄今为止,已经研究了几种仅使用单次 EEG 信号的分类方法。在某些情况下,使用机器学习模型进行分类;但是,构建的模型与 ERP 特征之间的关系仍不清楚。在这项研究中,为每个人构建了 LightGBM 模型,以对单次波形进行分类,并可视化这些特征与 ERP 特征之间的关系。该模型使用的特征是具有 10ms 时间宽度的 EEG 幅度的平均值和标准偏差。最佳曲线下面积(AUC)评分得分为 0.92,但在某些情况下,AUC 得分较低。观察到 AUC 得分的个体差异很大。在每种情况下,在检查特征的重要性时,在 10ms 时间宽度部分显示出较高的重要性,在目标和非目标之间的 ERP 波形中观察到很大的差异。由于在这项研究中构建的模型被发现反映了 ERP 的特征,因此作为下一步,我们将尝试使用参与者感兴趣的刺激来提高判别性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验