Suppr超能文献

使用隐私保护联邦学习进行妊娠体重增加预测。

Gestational weight gain prediction using privacy preserving federated learning.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2170-2174. doi: 10.1109/EMBC46164.2021.9630505.

Abstract

Gestational weight gain prediction in expecting women is associated with multiple risks. Manageable interventions can be devised if the weight gain can be predicted as early as possible. However, training the model to predict such weight gain requires access to centrally stored privacy sensitive weight data. Federated learning can help mitigate this problem by sending local copies of trained models instead of raw data and aggregate them at the central server. In this paper, we present a privacy preserving federated learning approach where the participating users collaboratively learn and update the global model. Furthermore, we show that this model updation can be done incrementally without having the need to store the local updates eternally. Our proposed model achieves a mean absolute error of 4.455 kgs whilst preserving privacy against 2.572 kgs achieved in a centralised approach utilising individual training data until day 140.Clinical relevance- Privacy preserving training of machine learning algorithm for early gestational weight gain prediction with minor tradeoff to performance.

摘要

预测孕妇的孕期体重增加与多种风险相关。如果能够尽早预测体重增加,则可以制定可管理的干预措施。但是,要训练模型来预测这种体重增加,需要访问集中存储的隐私敏感体重数据。联邦学习可以通过发送训练模型的本地副本而不是原始数据,并在中央服务器上对其进行汇总,从而帮助缓解此问题。在本文中,我们提出了一种隐私保护的联邦学习方法,其中参与用户可以协作学习和更新全局模型。此外,我们还证明了可以在不永久存储本地更新的情况下,以增量方式进行模型更新。我们提出的模型在保护隐私的同时,在第 140 天之前使用个体训练数据实现了 4.455 公斤的平均绝对误差,而集中式方法的性能则提高了 2.572 公斤。

临床意义-使用机器学习算法进行早期孕期体重增加预测的隐私保护训练,对性能的影响很小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验