Suppr超能文献

基于联邦学习与差分隐私的疾病预测隐私保护模型训练。

Privacy-preserving Model Training for Disease Prediction Using Federated Learning with Differential Privacy.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:1358-1361. doi: 10.1109/EMBC48229.2022.9871742.

Abstract

Machine learning is playing an increasingly critical role in health science with its capability of inferring valuable information from high-dimensional data. More training data provides greater statistical power to generate better models that can help decision-making in healthcare. However, this often requires combining research and patient data across institutions and hospitals, which is not always possible due to privacy considerations. In this paper, we outline a simple federated learning algorithm implementing differential privacy to ensure privacy when training a machine learning model on data spread across different institutions. We tested our model by predicting breast cancer status from gene expression data. Our model achieves a similar level of accuracy and precision as a single-site non-private neural network model when we enforce privacy. This result suggests that our algorithm is an effective method of implementing differential privacy with federated learning, and clinical data scientists can use our general framework to produce differentially private models on federated datasets. Our framework is available at https://github.com/gersteinlab/idash20FL.

摘要

机器学习在健康科学领域中发挥着越来越重要的作用,它能够从高维数据中推断出有价值的信息。更多的训练数据提供了更大的统计能力,从而生成更好的模型,帮助医疗保健中的决策。然而,这通常需要在机构和医院之间结合研究和患者数据,由于隐私考虑,这并不总是可行的。在本文中,我们概述了一种简单的联邦学习算法,实现了差分隐私,以确保在跨不同机构的数据上训练机器学习模型时保护隐私。我们通过使用基因表达数据预测乳腺癌状态来测试我们的模型。当我们实施隐私时,我们的模型达到了与单个站点非私有神经网络模型相似的准确性和精度水平。这一结果表明,我们的算法是在联邦学习中实现差分隐私的有效方法,临床数据科学家可以使用我们的通用框架在联邦数据集中生成差分隐私模型。我们的框架可在 https://github.com/gersteinlab/idash20FL 获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验