Suppr超能文献

基于《中国人手腕骨发育标准-CHN 法》的数据增强与深度学习在骨龄评估中的应用

Data Enhancement and Deep Learning for Bone Age Assessment using The Standards of Skeletal Maturity of Hand and Wrist for Chinese.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2605-2609. doi: 10.1109/EMBC46164.2021.9630226.

Abstract

Conventional methods for artificial age determination of skeletal bones have several problems, such as strong subjectivity, large random errors, complex evaluation processes, and long evaluation cycles. In this study, an automated age determination of skeletal bones was performed based on Deep Learning. Two methods were used to evaluate bone age, one based on examining all bones in the palm and another based on the deep convolutional neural network (CNN) method. Both methods were evaluated using the same test dataset. Moreover, we can extend the dataset and increase the generalisation ability of the network by data expansion. Consequently, a more accurate bone age can be obtained. This method can reduce the average error of the final bone age evaluation and lower the upper limit of the absolute value of the error of the single bone age. The experiments show the effectiveness of the proposed method, which can provide doctors and users with more stable, efficient and convenient diagnosis support and decision support.

摘要

传统的骨骼人工年龄鉴定方法存在主观性强、随机误差大、评价过程复杂、评价周期长等问题。本研究基于深度学习对骨骼的自动年龄鉴定进行了研究。我们使用了两种方法来评估骨龄,一种是基于检查手掌中的所有骨骼,另一种是基于深度卷积神经网络(CNN)的方法。这两种方法都使用相同的测试数据集进行评估。此外,我们可以通过数据扩展来扩展数据集并提高网络的泛化能力,从而获得更准确的骨龄。这种方法可以减少最终骨龄评估的平均误差,并降低单个骨龄的误差绝对值的上限。实验表明,该方法具有有效性,可为医生和用户提供更稳定、高效和便捷的诊断支持和决策支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验