Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3070-3073. doi: 10.1109/EMBC46164.2021.9629657.
During endoscopic surgery, smoke removal is important and meaningful for increasing the visual quality of endoscopic images. However, unlike natural image dehaze, it is practical impossible to build a large paired endoscopic image training dataset with/without smoke. Therefore, in this paper, we propose a new approach, called Desmoke-CycleGAN, which combined detection and removal of smoke together, to improve the CycleGAN model for endoscopic image smoke removal. The detector can provide information about smoke locations and densities, which helps the GAN model to be more stable and efficient for smoke removal. Although some imperfections still exist, the experimental results have demonstrated that this method outperforms other state-of-the-art smoke removal approaches with unpaired real endoscopic images.Clinical Relevance- This can help improve the visibility in endoscopic surgery and to get smoke-free endoscopic images with better quality.
在内窥镜手术中,去除烟雾对于提高内窥镜图像的视觉质量非常重要且有意义。然而,与自然图像去雾不同,建立一个带有/不带有烟雾的大型配对内窥镜图像训练数据集在实践中是不可能的。因此,在本文中,我们提出了一种新的方法,称为 Desmoke-CycleGAN,它将烟雾的检测和去除结合在一起,以改进用于内窥镜图像去雾的 CycleGAN 模型。该检测器可以提供烟雾位置和密度的信息,这有助于 GAN 模型更稳定和高效地进行烟雾去除。尽管仍然存在一些不完美之处,但实验结果表明,与使用未配对的真实内窥镜图像的其他最先进的烟雾去除方法相比,该方法具有更好的性能。
临床相关性- 这有助于提高内窥镜手术中的可见度,并获得质量更好的无烟雾内窥镜图像。