Suppr超能文献

DeSmoke-LAP:用于腹腔镜手术去雾的改进的非配对图像到图像翻译。

DeSmoke-LAP: improved unpaired image-to-image translation for desmoking in laparoscopic surgery.

机构信息

Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Department of Computer Science, University College London, London, UK.

Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam, South Korea.

出版信息

Int J Comput Assist Radiol Surg. 2022 May;17(5):885-893. doi: 10.1007/s11548-022-02595-2. Epub 2022 Mar 30.

Abstract

PURPOSE

Robotic-assisted laparoscopic surgery has become the trend in medicine thanks to its convenience and lower risk of infection against traditional open surgery. However, the visibility during these procedures may severely deteriorate due to electrocauterisation which generates smoke in the operating cavity. This decreased visibility hinders the procedural time and surgical performance. Recent deep learning-based techniques have shown the potential for smoke and glare removal, but few targets laparoscopic videos.

METHOD

We propose DeSmoke-LAP, a new method for removing smoke from real robotic laparoscopic hysterectomy videos. The proposed method is based on the unpaired image-to-image cycle-consistent generative adversarial network in which two novel loss functions, namely, inter-channel discrepancies and dark channel prior, are integrated to facilitate smoke removal while maintaining the true semantics and illumination of the scene.

RESULTS

DeSmoke-LAP is compared with several state-of-the-art desmoking methods qualitatively and quantitatively using referenceless image quality metrics on 10 laparoscopic hysterectomy videos through 5-fold cross-validation.

CONCLUSION

DeSmoke-LAP outperformed existing methods and generated smoke-free images without applying ground truths (paired images) and atmospheric scattering model. This shows distinctive achievement in dehazing in surgery, even in scenarios with partial inhomogenenous smoke. Our code and hysterectomy dataset will be made publicly available at https://www.ucl.ac.uk/interventional-surgical-sciences/weiss-open-research/weiss-open-data-server/desmoke-lap .

摘要

目的

由于其便利性和降低感染传统开放式手术的风险,机器人辅助腹腔镜手术已成为医学领域的趋势。然而,由于电烙术会在手术腔内产生烟雾,这些手术过程中的可视性可能会严重恶化。这种可视性的降低会阻碍手术时间和手术效果。最近基于深度学习的技术已经显示出了去除烟雾和眩光的潜力,但很少有针对腹腔镜视频的目标。

方法

我们提出了一种用于从真实机器人腹腔镜子宫切除术视频中去除烟雾的新方法,即 DeSmoke-LAP。该方法基于未配对的图像到图像循环一致生成对抗网络,其中集成了两个新的损失函数,即通道间差异和暗通道先验,以促进烟雾去除,同时保持场景的真实语义和照明。

结果

通过 5 折交叉验证,在 10 个腹腔镜子宫切除术视频上使用无参考图像质量指标对 DeSmoke-LAP 与几种最先进的去烟方法进行了定性和定量比较。

结论

DeSmoke-LAP 优于现有的方法,并且在不应用地面真实(配对图像)和大气散射模型的情况下生成无烟雾的图像。这表明在手术去雾方面取得了显著的成就,即使在存在部分不均匀烟雾的情况下也是如此。我们的代码和子宫切除术数据集将在 https://www.ucl.ac.uk/interventional-surgical-sciences/weiss-open-research/weiss-open-data-server/desmoke-lap 上公开提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0168/9110497/2d5556890884/11548_2022_2595_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验