Suppr超能文献

基于Poolformer的内镜图像分类算法

Endoscopic image classification algorithm based on Poolformer.

作者信息

Wang Huiqian, Wang Kun, Yan Tian, Zhou Hekai, Cao Enling, Lu Yi, Wang Yuanfa, Luo Jiasai, Pang Yu

机构信息

Postdoctoral Research Station, Chongqing Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, Chongqing University of Posts and Telecommunications, Chongqing, China.

Chongqing Xishan Science & Technology Co., Ltd., Chongqing, China.

出版信息

Front Neurosci. 2023 Sep 21;17:1273686. doi: 10.3389/fnins.2023.1273686. eCollection 2023.

Abstract

Image desmoking is a significant aspect of endoscopic image processing, effectively mitigating visual field obstructions without the need for additional surgical interventions. However, current smoke removal techniques tend to apply comprehensive video enhancement to all frames, encompassing both smoke-free and smoke-affected images, which not only escalates computational costs but also introduces potential noise during the enhancement of smoke-free images. In response to this challenge, this paper introduces an approach for classifying images that contain surgical smoke within endoscopic scenes. This classification method provides crucial target frame information for enhancing surgical smoke removal, improving the scientific robustness, and enhancing the real-time processing capabilities of image-based smoke removal method. The proposed endoscopic smoke image classification algorithm based on the improved Poolformer model, augments the model's capacity for endoscopic image feature extraction. This enhancement is achieved by transforming the Token Mixer within the encoder into a multi-branch structure akin to ConvNeXt, a pure convolutional neural network. Moreover, the conversion to a single-path topology during the prediction phase elevates processing speed. Experiments use the endoscopic dataset sourced from the Hamlyn Centre Laparoscopic/Endoscopic Video Dataset, augmented by Blender software rendering. The dataset comprises 3,800 training images and 1,200 test images, distributed in a 4:1 ratio of smoke-free to smoke-containing images. The outcomes affirm the superior performance of this paper's approach across multiple parameters. Comparative assessments against existing models, such as mobilenet_v3, efficientnet_b7, and ViT-B/16, substantiate that the proposed method excels in accuracy, sensitivity, and inference speed. Notably, when contrasted with the Poolformer_s12 network, the proposed method achieves a 2.3% enhancement in accuracy, an 8.2% boost in sensitivity, while incurring a mere 6.4 frames per second reduction in processing speed, maintaining 87 frames per second. The results authenticate the improved performance of the refined Poolformer model in endoscopic smoke image classification tasks. This advancement presents a lightweight yet effective solution for the automatic detection of smoke-containing images in endoscopy. This approach strikes a balance between the accuracy and real-time processing requirements of endoscopic image analysis, offering valuable insights for targeted desmoking process.

摘要

图像去烟是内镜图像处理的一个重要方面,可有效减轻视野障碍,无需额外的手术干预。然而,当前的烟雾去除技术倾向于对所有帧应用全面的视频增强,包括无烟图像和受烟雾影响的图像,这不仅增加了计算成本,还在无烟图像增强过程中引入了潜在噪声。针对这一挑战,本文介绍了一种在内镜场景中对包含手术烟雾的图像进行分类的方法。这种分类方法为增强手术烟雾去除提供了关键的目标帧信息,提高了基于图像的烟雾去除方法的科学稳健性和实时处理能力。所提出的基于改进的Poolformer模型的内镜烟雾图像分类算法,增强了模型对内镜图像特征提取的能力。这种增强是通过将编码器内的Token Mixer转换为类似于纯卷积神经网络ConvNeXt的多分支结构来实现的。此外,在预测阶段转换为单路径拓扑结构提高了处理速度。实验使用了来自哈姆林中心腹腔镜/内镜视频数据集的内镜数据集,并通过Blender软件渲染进行了扩充。该数据集包括3800张训练图像和1200张测试图像,无烟图像与含烟图像的分布比例为4:1。结果证实了本文方法在多个参数上的优越性能。与现有模型(如mobilenet_v3、efficientnet_b7和ViT-B/16)的比较评估表明,所提出的方法在准确率、灵敏度和推理速度方面表现出色。值得注意的是,与Poolformer_s12网络相比,所提出的方法准确率提高了2.3%,灵敏度提高了8.2%,而处理速度仅每秒降低6.4帧,仍保持每秒87帧。结果验证了改进后的Poolformer模型在内镜烟雾图像分类任务中的性能提升。这一进展为内镜检查中含烟图像的自动检测提供了一种轻量级但有效的解决方案。这种方法在内镜图像分析的准确性和实时处理要求之间取得了平衡,为有针对性的去烟过程提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a4f/10551176/60922e11e295/fnins-17-1273686-g001.jpg

相似文献

1
Endoscopic image classification algorithm based on Poolformer.基于Poolformer的内镜图像分类算法
Front Neurosci. 2023 Sep 21;17:1273686. doi: 10.3389/fnins.2023.1273686. eCollection 2023.
2
Dual-stage semantic segmentation of endoscopic surgical instruments.内窥镜手术器械的双阶段语义分割
Med Phys. 2024 Dec;51(12):9125-9137. doi: 10.1002/mp.17397. Epub 2024 Sep 10.
4
Surgical smoke removal via residual Swin transformer network.通过剩余 Swin 变换网络去除手术烟雾。
Int J Comput Assist Radiol Surg. 2023 Aug;18(8):1417-1427. doi: 10.1007/s11548-023-02835-z. Epub 2023 Jan 23.
5
Variational based smoke removal in laparoscopic images.基于变分的腹腔镜图像烟雾去除。
Biomed Eng Online. 2018 Oct 19;17(1):139. doi: 10.1186/s12938-018-0590-5.

本文引用的文献

2
Surgical smoke removal via residual Swin transformer network.通过剩余 Swin 变换网络去除手术烟雾。
Int J Comput Assist Radiol Surg. 2023 Aug;18(8):1417-1427. doi: 10.1007/s11548-023-02835-z. Epub 2023 Jan 23.
3
Artificial intelligence and automation in endoscopy and surgery.内镜检查与手术中的人工智能和自动化
Nat Rev Gastroenterol Hepatol. 2023 Mar;20(3):171-182. doi: 10.1038/s41575-022-00701-y. Epub 2022 Nov 9.
6
Endoscopic methods for the detection and treatment of gastric cancer.用于胃癌检测和治疗的内镜方法。
Curr Opin Gastroenterol. 2022 Sep 1;38(5):436-442. doi: 10.1097/MOG.0000000000000867. Epub 2022 Jul 15.
8
Endoscopic Imaging Technology Today.当今的内镜成像技术。
Diagnostics (Basel). 2022 May 18;12(5):1262. doi: 10.3390/diagnostics12051262.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验