Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3114-3117. doi: 10.1109/EMBC46164.2021.9630525.
Colorectal cancer has become the second leading cause of cancer-related death, attracting considerable interest for automatic polyp segmentation in polyp screening system. Accurate segmentation of polyps from colonoscopy is a challenging task as the polyps diverse in color, size and texture while the boundary between polyp and background is sometimes ambiguous. We propose a novel alternative prediction refinement network (APRNet) to more accurately segment polyps. Based on the UNet architecture, our APRNet aims at exploiting all-level features by alternatively leveraging features from encoder and decoder branch. Specifically, a series of prediction residual refinement modules (PRR) learn the residual and progressively refine the segmentation at various resolution. The proposed APRNet is evaluated on two benchmark datasets and achieves new state-of-the-art performance with a dice of 91.33% and an accuracy of 97.31% on the Kvasir-SEG dataset, and a dice of 86.33% and an accuracy of 97.12% on the EndoScene dataset.Clinical relevance- This work proposes an automatic and accurate polyp segmentation algorithm that achieves new state- of-the-art performance, which can potentially act as an observer pointing out polyps in colonoscopy procedure.
结直肠癌已成为癌症相关死亡的第二大主要原因,因此在息肉筛查系统中自动进行息肉分割吸引了相当大的兴趣。由于息肉在颜色、大小和纹理上存在多样性,而息肉和背景之间的边界有时也不明确,因此从结肠镜检查中准确分割息肉是一项具有挑战性的任务。我们提出了一种新颖的替代预测细化网络 (APRNet) ,以更准确地分割息肉。基于 UNet 架构,我们的 APRNet 旨在通过交替利用编码器和解码器分支的特征来利用所有级别的特征。具体来说,一系列预测残差细化模块 (PRR) 学习残差,并以各种分辨率逐步细化分割。所提出的 APRNet 在两个基准数据集上进行了评估,在 Kvasir-SEG 数据集上取得了新的最先进的性能,Dice 系数为 91.33%,准确率为 97.31%,在 EndoScene 数据集上取得了 Dice 系数为 86.33%,准确率为 97.12%。临床相关性 - 这项工作提出了一种自动且准确的息肉分割算法,达到了新的最先进的性能,可作为结肠镜检查中指出息肉的观察者。