Suppr超能文献

息肉分割网络(PolypSegNet):一种用于从结肠镜检查图像中自动分割息肉的改进型编码器-解码器架构。

PolypSegNet: A modified encoder-decoder architecture for automated polyp segmentation from colonoscopy images.

作者信息

Mahmud Tanvir, Paul Bishmoy, Fattah Shaikh Anowarul

机构信息

Department of EEE, BUET, ECE Building, West Palashi, Dhaka, 1205, Bangladesh.

出版信息

Comput Biol Med. 2021 Jan;128:104119. doi: 10.1016/j.compbiomed.2020.104119. Epub 2020 Nov 13.

Abstract

Colorectal cancer has become one of the major causes of death throughout the world. Early detection of Polyp, an early symptom of colorectal cancer, can increase the survival rate to 90%. Segmentation of Polyp regions from colonoscopy images can facilitate the faster diagnosis. Due to varying sizes, shapes, and textures of polyps with subtle visible differences with the background, automated segmentation of polyps still poses a major challenge towards traditional diagnostic methods. Conventional Unet architecture and some of its variants have gained much popularity for its automated segmentation though having several architectural limitations that result in sub-optimal performance. In this paper, an encoder-decoder based modified deep neural network architecture is proposed, named as PolypSegNet, to overcome several limitations of traditional architectures for very precise automated segmentation of polyp regions from colonoscopy images. For achieving more generalized representation at each scale of both the encoder and decoder module, several sequential depth dilated inception (DDI) blocks are integrated into each unit layer for aggregating features from different receptive areas utilizing depthwise dilated convolutions. Different scales of contextual information from all encoder unit layers pass through the proposed deep fusion skip module (DFSM) to generate skip interconnection with each decoder layer rather than separately connecting different levels of encoder and decoder. For more efficient reconstruction in the decoder module, multi-scale decoded feature maps generated at various levels of the decoder are jointly optimized in the proposed deep reconstruction module (DRM) instead of only considering the decoded feature map from final decoder layer. Extensive experimentations on four publicly available databases provide very satisfactory performance with mean five-fold cross-validation dice scores of 91.52% in CVC-ClinicDB database, 92.8% in CVC-ColonDB database, 88.72% in Kvasir-SEG database, and 84.79% in ETIS-Larib database. The proposed network provides very accurate segmented polyp regions that will expedite the diagnosis of polyps even in challenging conditions.

摘要

结直肠癌已成为全球主要死因之一。息肉是结直肠癌的早期症状,早期检测息肉可将生存率提高到90%。从结肠镜图像中分割息肉区域有助于更快地进行诊断。由于息肉的大小、形状和纹理各不相同,与背景的可见差异细微,息肉的自动分割对传统诊断方法仍然构成重大挑战。传统的Unet架构及其一些变体因其自动分割功能而备受欢迎,尽管存在一些架构限制,导致性能次优。本文提出了一种基于编码器-解码器的改进深度神经网络架构,名为PolypSegNet,以克服传统架构的几个局限性,从而从结肠镜图像中非常精确地自动分割息肉区域。为了在编码器和解码器模块的每个尺度上实现更通用的表示,几个顺序深度扩张 inception(DDI)块被集成到每个单元层中,以利用深度可分离扩张卷积聚合来自不同感受野的特征。来自所有编码器单元层的不同尺度的上下文信息通过所提出的深度融合跳跃模块(DFSM),与每个解码器层生成跳跃连接,而不是分别连接编码器和解码器的不同级别。为了在解码器模块中进行更有效的重建,在解码器的各个级别生成的多尺度解码特征图在提出的深度重建模块(DRM)中进行联合优化,而不是仅考虑最终解码器层的解码特征图。在四个公开可用数据库上进行的广泛实验提供了非常令人满意的性能,在CVC-ClinicDB数据库中的平均五折交叉验证骰子分数为91.52%,在CVC-ColonDB数据库中为92.8%,在Kvasir-SEG数据库中为88.72%,在ETIS-Larib数据库中为84.79%。所提出的网络提供了非常准确的分割息肉区域,即使在具有挑战性的条件下也能加快息肉的诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验