Suppr超能文献

多尺度嵌套 UNet 与 Transformer 相结合的结直肠息肉分割方法。

Multi-scale nested UNet with transformer for colorectal polyp segmentation.

机构信息

Department of Gastroenterology, Beijing Chaoyang Hospital, the Third Clinical Medical College of Capital Medical University, Beijing, China.

Hunan Key Laboratory of Nonferrous Resources and Geological Hazard Exploration, Changsha, China.

出版信息

J Appl Clin Med Phys. 2024 Jun;25(6):e14351. doi: 10.1002/acm2.14351. Epub 2024 Mar 29.

Abstract

BACKGROUND

Polyp detection and localization are essential tasks for colonoscopy. U-shape network based convolutional neural networks have achieved remarkable segmentation performance for biomedical images, but lack of long-range dependencies modeling limits their receptive fields.

PURPOSE

Our goal was to develop and test a novel architecture for polyp segmentation, which takes advantage of learning local information with long-range dependencies modeling.

METHODS

A novel architecture combining with multi-scale nested UNet structure integrated transformer for polyp segmentation was developed. The proposed network takes advantage of both CNN and transformer to extract distinct feature information. The transformer layer is embedded between the encoder and decoder of a U-shape net to learn explicit global context and long-range semantic information. To address the challenging of variant polyp sizes, a MSFF unit was proposed to fuse features with multiple resolution.

RESULTS

Four public datasets and one in-house dataset were used to train and test the model performance. Ablation study was also conducted to verify each component of the model. For dataset Kvasir-SEG and CVC-ClinicDB, the proposed model achieved mean dice score of 0.942 and 0.950 respectively, which were more accurate than the other methods. To show the generalization of different methods, we processed two cross dataset validations, the proposed model achieved the highest mean dice score. The results demonstrate that the proposed network has powerful learning and generalization capability, significantly improving segmentation accuracy and outperforming state-of-the-art methods.

CONCLUSIONS

The proposed model produced more accurate polyp segmentation than current methods on four different public and one in-house datasets. Its capability of polyps segmentation in different sizes shows the potential clinical application.

摘要

背景

息肉检测和定位是结肠镜检查的重要任务。基于 U 形网络的卷积神经网络在生物医学图像分割方面取得了显著的性能,但缺乏长程依赖建模限制了它们的感受野。

目的

我们的目标是开发和测试一种新的息肉分割架构,利用长程依赖建模来学习局部信息。

方法

我们开发了一种新的架构,结合多尺度嵌套 U 形网络结构集成了 Transformer 用于息肉分割。所提出的网络利用 CNN 和 Transformer 来提取不同的特征信息。Transformer 层嵌入在 U 形网络的编码器和解码器之间,以学习显式的全局上下文和长程语义信息。为了解决不同大小的息肉的挑战,提出了一个 MSFF 单元来融合多分辨率的特征。

结果

我们使用了四个公共数据集和一个内部数据集来训练和测试模型性能。还进行了消融研究来验证模型的每个组件。对于 Kvasir-SEG 和 CVC-ClinicDB 数据集,所提出的模型分别实现了 0.942 和 0.950 的平均骰子分数,比其他方法更准确。为了展示不同方法的泛化能力,我们进行了两个跨数据集的验证,所提出的模型实现了最高的平均骰子分数。结果表明,所提出的网络具有强大的学习和泛化能力,显著提高了分割准确性,并优于最先进的方法。

结论

在所提出的模型中,在四个不同的公共数据集和一个内部数据集上的息肉分割比当前方法更准确。它对不同大小的息肉的分割能力显示了其潜在的临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d06/11163511/64f57e74e455/ACM2-25-e14351-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验