Department of Gynecology, Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China.
Br J Hosp Med (Lond). 2024 Jul 30;85(7):1-13. doi: 10.12968/hmed.2024.0156. Epub 2024 Jul 24.
Cervical cancer continues to be a significant cause of cancer-related deaths among women, especially in low-resource settings where screening and follow-up care are lacking. The transcription factor zinc finger E-box-binding homeobox 2 (ZEB2) has been identified as a potential marker for tumour aggressiveness and cancer progression in cervical cancer tissues. This study presents a hybrid deep learning system developed to classify cervical cancer images based on ZEB2 expression. The system integrates multiple convolutional neural network models-EfficientNet, DenseNet, and InceptionNet-using ensemble voting. We utilised the gradient-weighted class activation mapping (Grad-CAM) visualisation technique to improve the interpretability of the decisions made by the convolutional neural networks. The dataset consisted of 649 annotated images, which were divided into training, validation, and testing sets. The hybrid model exhibited a high classification accuracy of 94.4% on the test set. The Grad-CAM visualisations offered insights into the model's decision-making process, emphasising the image regions crucial for classifying ZEB2 expression levels. The proposed hybrid deep learning model presents an effective and interpretable method for the classification of cervical cancer based on ZEB2 expression. This approach holds the potential to substantially aid in early diagnosis, thereby potentially enhancing patient outcomes and mitigating healthcare costs. Future endeavours will concentrate on enhancing the model's accuracy and investigating its applicability to other cancer types.
宫颈癌仍然是导致女性癌症相关死亡的一个重要原因,特别是在资源匮乏的地区,那里缺乏筛查和后续护理。转录因子锌指 E 盒结合同源盒 2(ZEB2)已被确定为宫颈癌组织中肿瘤侵袭性和癌症进展的潜在标志物。本研究提出了一种基于 ZEB2 表达的宫颈癌图像分类的混合深度学习系统。该系统使用集成投票的方式整合了多个卷积神经网络模型——EfficientNet、DenseNet 和 InceptionNet。我们利用梯度加权类激活映射(Grad-CAM)可视化技术来提高卷积神经网络决策的可解释性。该数据集包含 649 张标注图像,分为训练集、验证集和测试集。混合模型在测试集上的分类准确率达到了 94.4%。Grad-CAM 可视化提供了对模型决策过程的深入了解,强调了对分类 ZEB2 表达水平至关重要的图像区域。所提出的混合深度学习模型为基于 ZEB2 表达的宫颈癌分类提供了一种有效且可解释的方法。这种方法有可能极大地帮助早期诊断,从而有可能改善患者的预后并降低医疗成本。未来的研究将集中于提高模型的准确性,并研究其在其他癌症类型中的适用性。
Br J Hosp Med (Lond). 2024-7-30
Br J Hosp Med (Lond). 2024-8-30
Asian Pac J Cancer Prev. 2019-11-1
BMC Med Imaging. 2024-5-21
BMC Med Imaging. 2024-9-2
Br J Hosp Med (Lond). 2024-8-30
Diagnostics (Basel). 2025-6-17