文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用深度学习网络对宫颈癌中 ZEB2 表达图像进行分类。

Utilising deep learning networks to classify ZEB2 expression images in cervical cancer.

机构信息

Department of Gynecology, Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China.

出版信息

Br J Hosp Med (Lond). 2024 Jul 30;85(7):1-13. doi: 10.12968/hmed.2024.0156. Epub 2024 Jul 24.


DOI:10.12968/hmed.2024.0156
PMID:39078889
Abstract

Cervical cancer continues to be a significant cause of cancer-related deaths among women, especially in low-resource settings where screening and follow-up care are lacking. The transcription factor zinc finger E-box-binding homeobox 2 (ZEB2) has been identified as a potential marker for tumour aggressiveness and cancer progression in cervical cancer tissues. This study presents a hybrid deep learning system developed to classify cervical cancer images based on ZEB2 expression. The system integrates multiple convolutional neural network models-EfficientNet, DenseNet, and InceptionNet-using ensemble voting. We utilised the gradient-weighted class activation mapping (Grad-CAM) visualisation technique to improve the interpretability of the decisions made by the convolutional neural networks. The dataset consisted of 649 annotated images, which were divided into training, validation, and testing sets. The hybrid model exhibited a high classification accuracy of 94.4% on the test set. The Grad-CAM visualisations offered insights into the model's decision-making process, emphasising the image regions crucial for classifying ZEB2 expression levels. The proposed hybrid deep learning model presents an effective and interpretable method for the classification of cervical cancer based on ZEB2 expression. This approach holds the potential to substantially aid in early diagnosis, thereby potentially enhancing patient outcomes and mitigating healthcare costs. Future endeavours will concentrate on enhancing the model's accuracy and investigating its applicability to other cancer types.

摘要

宫颈癌仍然是导致女性癌症相关死亡的一个重要原因,特别是在资源匮乏的地区,那里缺乏筛查和后续护理。转录因子锌指 E 盒结合同源盒 2(ZEB2)已被确定为宫颈癌组织中肿瘤侵袭性和癌症进展的潜在标志物。本研究提出了一种基于 ZEB2 表达的宫颈癌图像分类的混合深度学习系统。该系统使用集成投票的方式整合了多个卷积神经网络模型——EfficientNet、DenseNet 和 InceptionNet。我们利用梯度加权类激活映射(Grad-CAM)可视化技术来提高卷积神经网络决策的可解释性。该数据集包含 649 张标注图像,分为训练集、验证集和测试集。混合模型在测试集上的分类准确率达到了 94.4%。Grad-CAM 可视化提供了对模型决策过程的深入了解,强调了对分类 ZEB2 表达水平至关重要的图像区域。所提出的混合深度学习模型为基于 ZEB2 表达的宫颈癌分类提供了一种有效且可解释的方法。这种方法有可能极大地帮助早期诊断,从而有可能改善患者的预后并降低医疗成本。未来的研究将集中于提高模型的准确性,并研究其在其他癌症类型中的适用性。

相似文献

[1]
Utilising deep learning networks to classify ZEB2 expression images in cervical cancer.

Br J Hosp Med (Lond). 2024-7-30

[2]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[3]
Deep Learning-Based System Combining Chest X-Ray and Computerized Tomography Images for COVID-19 Diagnosis.

Br J Hosp Med (Lond). 2024-8-30

[4]
Convolutional Neural Networks for Classifying Cervical Cancer Types Using Histological Images.

J Digit Imaging. 2023-4

[5]
Deep Convolution Neural Network for Malignancy Detection and Classification in Microscopic Uterine Cervix Cell Images.

Asian Pac J Cancer Prev. 2019-11-1

[6]
Grad-CAM helps interpret the deep learning models trained to classify multiple sclerosis types using clinical brain magnetic resonance imaging.

J Neurosci Methods. 2021-4-1

[7]
Refining neural network algorithms for accurate brain tumor classification in MRI imagery.

BMC Med Imaging. 2024-5-21

[8]
Revolutionizing breast ultrasound diagnostics with EfficientNet-B7 and Explainable AI.

BMC Med Imaging. 2024-9-2

[9]
Enhancing the Diagnostic Accuracy of Sacroiliitis: A Machine Learning Approach Applied to Computed Tomography Imaging.

Br J Hosp Med (Lond). 2024-8-30

[10]
Diagnosis of Cervical Cancer based on Ensemble Deep Learning Network using Colposcopy Images.

Biomed Res Int. 2021

引用本文的文献

[1]
Machine and Deep Learning for the Diagnosis, Prognosis, and Treatment of Cervical Cancer: A Scoping Review.

Diagnostics (Basel). 2025-6-17

[2]
Recent advances in applications of machine learning in cervical cancer research: a focus on prediction models.

Obstet Gynecol Sci. 2025-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索