Suppr超能文献

STQS:用于自动睡眠评分的可解释多模态时空序列模型。

STQS: Interpretable multi-modal Spatial-Temporal-seQuential model for automatic Sleep scoring.

机构信息

University of Twente, Netherlands.

University of Twente, Netherlands.

出版信息

Artif Intell Med. 2021 Apr;114:102038. doi: 10.1016/j.artmed.2021.102038. Epub 2021 Feb 27.

Abstract

Sleep scoring is an important step for the detection of sleep disorders and usually performed by visual analysis. Since manual sleep scoring is time consuming, machine-learning based approaches have been proposed. Though efficient, these algorithms are black-box in nature and difficult to interpret by clinicians. In this paper, we propose a deep learning architecture for multi-modal sleep scoring, investigate the model's decision making process, and compare the model's reasoning with the annotation guidelines in the AASM manual. Our architecture, called STQS, uses convolutional neural networks (CNN) to automatically extract spatio-temporal features from 3 modalities (EEG, EOG and EMG), a bidirectional long short-term memory (Bi-LSTM) to extract sequential information, and residual connections to combine spatio-temporal and sequential features. We evaluated our model on two large datasets, obtaining an accuracy of 85% and 77% and a macro F1 score of 79% and 73% on SHHS and an in-house dataset, respectively. We further quantify the contribution of various architectural components and conclude that adding LSTM layers improves performance over a spatio-temporal CNN, while adding residual connections does not. Our interpretability results show that the output of the model is well aligned with AASM guidelines, and therefore, the model's decisions correspond to domain knowledge. We also compare multi-modal models and single-channel models and suggest that future research should focus on improving multi-modal models.

摘要

睡眠评分是检测睡眠障碍的重要步骤,通常通过视觉分析来完成。由于手动睡眠评分非常耗时,因此已经提出了基于机器学习的方法。虽然这些算法效率很高,但它们本质上是黑盒的,临床医生难以理解。在本文中,我们提出了一种用于多模态睡眠评分的深度学习架构,研究了模型的决策过程,并将模型的推理与 AASM 手册中的注释指南进行了比较。我们的架构称为 STQS,它使用卷积神经网络(CNN)自动从 3 种模态(EEG、EOG 和 EMG)中提取时空特征,使用双向长短期记忆(Bi-LSTM)提取顺序信息,并使用残差连接将时空和顺序特征结合起来。我们在两个大型数据集上评估了我们的模型,在 SHHS 数据集上获得了 85%和 77%的准确率,以及 79%和 73%的宏 F1 分数,在内部数据集上分别获得了 85%和 77%的准确率,以及 79%和 73%的宏 F1 分数。我们进一步量化了各种架构组件的贡献,并得出结论,添加 LSTM 层可以提高性能,优于时空 CNN,而添加残差连接则不行。我们的可解释性结果表明,模型的输出与 AASM 指南非常一致,因此模型的决策与领域知识相对应。我们还比较了多模态模型和单通道模型,并建议未来的研究应该集中于改进多模态模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验