Suppr超能文献

ZooME:利用缩放注意力和元数据嵌入的深度神经网络进行高效的黑色素瘤检测。

ZooME: Efficient Melanoma Detection Using Zoom-in Attention and Metadata Embedding Deep Neural Network.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:4041-4044. doi: 10.1109/EMBC46164.2021.9630452.

Abstract

Melanoma detection is a crucial yet hard task for both dermatologists and computer-aided diagnosis (CAD). Many traditional machine learning algorithms including deep learning-based methods are employed for melanoma classification. However, more and more complex network architectures do not harvest a leap in model performance. In this paper, we aim to enhance the credibility of CAD approach for melanoma by paying more attention to clinically important information. We propose a Zoom-in Attention and Metadata Embedding (ZooME) melanoma detection network by: 1) introducing a Zoom-in Attention model to better extract and utilize unique pathological information of dermoscopy images; 2) embedding patients' demographic information including age, gender, and anatomic body site, to provide well-rounded information for better prediction. We apply a ten-fold cross-validation on the latest ISIC-2020 dataset with 33,126 dermoscopy images. The proposed ZooME achieved state-of-the-art results with 92.23% in AUC score, 84.59% in accuracy, 85.95% in sensitivity, and 84.63% in specialty, respectively.

摘要

黑色素瘤检测对皮肤科医生和计算机辅助诊断(CAD)来说都是一项至关重要但具有挑战性的任务。许多传统的机器学习算法,包括基于深度学习的方法,都被用于黑色素瘤分类。然而,越来越复杂的网络架构并没有带来模型性能的显著提升。在本文中,我们旨在通过更加关注临床重要信息,提高 CAD 方法在黑色素瘤检测中的可信度。我们提出了一种 Zoom-in Attention 和 Metadata Embedding(ZooME)黑色素瘤检测网络,方法是:1)引入 Zoom-in Attention 模型,以更好地提取和利用皮肤镜图像的独特病理信息;2)嵌入患者的人口统计学信息,包括年龄、性别和解剖部位,为更好的预测提供全面的信息。我们在最新的 ISIC-2020 数据集上进行了十折交叉验证,该数据集包含 33126 张皮肤镜图像。所提出的 ZooME 在 AUC 评分、准确率、敏感度和特异性方面分别达到了 92.23%、84.59%、85.95%和 84.63%的最先进水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验