Suppr超能文献

基于深度神经网络与物理模型的 Burger 方程反问题求解

A Combination of Deep Neural Networks and Physics to Solve the Inverse Problem of Burger's Equation.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:4465-4468. doi: 10.1109/EMBC46164.2021.9630259.

Abstract

One of the most basic nonlinear Partial Differential Equations (PDEs) to model the effects of propagation and diffusion is Burger's equation. This puts great emphasize on seeking efficient versatile methods for finding a solution to the forward and inverse problems of this equation. The focus of this paper is to introduce a method for solving the inverse problem of Burger's equation using neural networks. With recent advances in the area of deep learning, a Physics-Informed Neural Network (PINN) is a category of neural networks that proved efficient for handling PDEs. In our work, the 1D and 2D Burger's equations are simulated by applying a PINN to a set of domain points. The training process of PINNs is governed by the PDE formula, the initial conditions (ICs), the Boundary Conditions (BCs), and the loss minimization algorithm. After training the network to predict the coefficients of the nonlinear PDE, the inverse problem of the 1D and 2D Burger's equations are solved with an error as low as 0.047 and 0.2 for 1D and 2D case studies, respectively. The wave propagation model is accomplished with an approximate training loss value of 1×e. The utilization of PINNs for modeling Burger's equation is a mesh-free approach that competes with the commonly used numerical methods as it overcomes the curse of dimensionality. Training the PINN model to predict the propagation and diffusion effects can also be generalized to address further detailed applications of Burger's equation with complex domains. This contributes to clinical applications such as ultrasound therapeutics.

摘要

用于模拟传播和扩散效应的最基本的非线性偏微分方程(PDEs)之一是 Burger 方程。这就非常强调寻求有效的通用方法来寻找该方程的正问题和反问题的解。本文的重点是介绍一种使用神经网络解决 Burger 方程反问题的方法。随着深度学习领域的最新进展,物理信息神经网络(PINN)是一类用于处理 PDE 的神经网络,被证明非常有效。在我们的工作中,通过将 PINN 应用于一组域点来模拟 1D 和 2D Burger 方程。PINN 的训练过程由 PDE 公式、初始条件(ICs)、边界条件(BCs)和损失最小化算法控制。在训练网络以预测非线性 PDE 的系数后,我们以低至 0.047 和 0.2 的误差分别解决了 1D 和 2D Burger 方程的反问题,对于 1D 和 2D 案例研究分别。波传播模型的近似训练损失值为 1×e。使用 PINN 对 Burger 方程进行建模是一种无网格方法,与常用的数值方法竞争,因为它克服了维度的诅咒。训练 PINN 模型来预测传播和扩散效应也可以推广到解决具有复杂域的 Burger 方程的进一步详细应用。这有助于临床应用,如超声治疗。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验