Suppr超能文献

使用卷积神经网络(CNN)分析腰椎旁肌肉形态。

Analysis of the paraspinal muscle morphology of the lumbar spine using a convolutional neural network (CNN).

作者信息

Baur David, Bieck Richard, Berger Johann, Neumann Juliane, Henkelmann Jeanette, Neumuth Thomas, Heyde Christoph-E, Voelker Anna

机构信息

Department for Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig AöR, Liebigstraße 20, 04103, Leipzig, Germany.

Innovation Center Computer Assisted Surgery (ICCAS), University Leipzig, Semmelweisstraße 14, 04103, Leipzig, Germany.

出版信息

Eur Spine J. 2022 Mar;31(3):774-782. doi: 10.1007/s00586-021-07073-y. Epub 2021 Dec 11.

Abstract

PURPOSE

This single-center study aimed to develop a convolutional neural network to segment multiple consecutive axial magnetic resonance imaging (MRI) slices of the lumbar spinal muscles of patients with lower back pain and automatically classify fatty muscle degeneration.

METHODS

We developed a fully connected deep convolutional neural network (CNN) with a pre-trained U-Net model trained on a dataset of 3,650 axial T2-weighted MRI images from 100 patients with lower back pain. We included all qualities of MRI; the exclusion criteria were fractures, tumors, infection, or spine implants. The training was performed using k-fold cross-validation (k = 10), and performance was evaluated using the dice similarity coefficient (DSC) and cross-sectional area error (CSA error). For clinical correlation, we used a simplified Goutallier classification (SGC) system with three classes.

RESULTS

The mean DSC was high for overall muscle (0.91) and muscle tissue segmentation (0.83) but showed deficiencies in fatty tissue segmentation (0.51). The CSA error was small for the overall muscle area of 8.42%, and fatty tissue segmentation showed a high mean CSA error of 40.74%. The SGC classification was correctly predicted in 75% of the patients.

CONCLUSION

Our fully connected CNN segmented overall muscle and muscle tissue with high precision and recall, as well as good DSC values. The mean predicted SGC values of all available patient axial slices showed promising results. With an overall Error of 25%, further development is needed for clinical implementation. Larger datasets and training of other model architectures are required to segment fatty tissue more accurately.

摘要

目的

本单中心研究旨在开发一种卷积神经网络,用于分割下背痛患者腰椎肌肉的多个连续轴向磁共振成像(MRI)切片,并自动对脂肪性肌肉退变进行分类。

方法

我们开发了一个全连接深度卷积神经网络(CNN),其采用在100名下背痛患者的3650张轴向T2加权MRI图像数据集上训练的预训练U-Net模型。我们纳入了所有质量的MRI;排除标准为骨折、肿瘤、感染或脊柱植入物。使用k折交叉验证(k = 10)进行训练,并使用骰子相似系数(DSC)和横截面积误差(CSA误差)评估性能。为了进行临床相关性分析,我们使用了具有三个类别的简化Goutallier分类(SGC)系统。

结果

整体肌肉(0.91)和肌肉组织分割(0.83)的平均DSC较高,但在脂肪组织分割方面存在不足(0.51)。整体肌肉面积的CSA误差较小,为8.42%,而脂肪组织分割的平均CSA误差较高,为40.74%。75%的患者SGC分类被正确预测。

结论

我们的全连接CNN对整体肌肉和肌肉组织进行了高精度、高召回率的分割,DSC值也较好。所有可用患者轴向切片的平均预测SGC值显示出有希望的结果。总体误差为25%,临床应用还需要进一步开发。需要更大的数据集和对其他模型架构进行训练,以更准确地分割脂肪组织。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验