State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, 712100, Shaanxi, China.
Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi, China.
BMC Genomics. 2021 Dec 11;22(1):889. doi: 10.1186/s12864-021-08189-7.
F-box proteins represent a diverse class of adaptor proteins of the ubiquitin-proteasome system (UPS) that play critical roles in the cell cycle, signal transduction, and immune response by removing or modifying cellular regulators. Among closely related organisms of the Caenorhabditis genus, remarkable divergence in F-box gene copy numbers was caused by sizeable species-specific expansion and contraction. Although F-box gene number expansion plays a vital role in shaping genomic diversity, little is known about molecular evolutionary mechanisms responsible for substantial differences in gene number of F-box genes and their functional diversification in Caenorhabditis. Here, we performed a comprehensive evolution and underlying mechanism analysis of F-box genes in five species of Caenorhabditis genus, including C. brenneri, C. briggsae, C. elegans, C. japonica, and C. remanei.
Herein, we identified and characterized 594, 192, 377, 39, 1426 F-box homologs encoding putative F-box proteins in the genome of C. brenneri, C. briggsae, C. elegans, C. japonica, and C. remanei, respectively. Our work suggested that extensive species-specific tandem duplication followed by a small amount of gene loss was the primary mechanism responsible for F-box gene number divergence in Caenorhabditis genus. After F-box gene duplication events occurred, multiple mechanisms have contributed to gene structure divergence, including exon/intron gain/loss, exonization/pseudoexonization, exon/intron boundaries alteration, exon splits, and intron elongation by tandem repeats. Based on high-throughput RNA sequencing data analysis, we proposed that F-box gene functions have diversified by sub-functionalization through highly divergent stage-specific expression patterns in Caenorhabditis species.
Massive species-specific tandem duplications and occasional gene loss drove the rapid evolution of the F-box gene family in Caenorhabditis, leading to complex gene structural variation and diversified functions affecting growth and development within and among Caenorhabditis species. In summary, our findings outline the evolution of F-box genes in the Caenorhabditis genome and lay the foundation for future functional studies.
F-box 蛋白是泛素蛋白酶体系统(UPS)中一类适应性蛋白,在细胞周期、信号转导和免疫反应中通过去除或修饰细胞调节剂发挥关键作用。在亲缘关系密切的秀丽隐杆线虫属生物中,F-box 基因拷贝数的显著差异是由大量的物种特异性扩张和收缩引起的。尽管 F-box 基因数量的扩张在塑造基因组多样性方面起着至关重要的作用,但对于 F-box 基因数量的显著差异及其在秀丽隐杆线虫中的功能多样化的分子进化机制知之甚少。在这里,我们对包括 C. brenneri、C. briggsae、C. elegans、C. japonica 和 C. remanei 在内的 5 种秀丽隐杆线虫属物种的 F-box 基因进行了全面的进化和潜在机制分析。
在此,我们鉴定并鉴定了 594、192、377、39 和 1426 个 F-box 同源物,分别编码 C. brenneri、C. briggsae、C. elegans、C. japonica 和 C. remanei 基因组中的推定 F-box 蛋白。我们的工作表明,广泛的物种特异性串联重复,随后是少量的基因丢失,是秀丽隐杆线虫属中 F-box 基因数量差异的主要机制。在 F-box 基因复制事件发生后,多种机制导致了基因结构的差异,包括外显子/内含子的获得/缺失、外显子化/假外显子化、外显子/内含子边界改变、外显子分裂以及串联重复的内含子延长。基于高通量 RNA 测序数据分析,我们提出,F-box 基因的功能通过高度不同的阶段特异性表达模式在秀丽隐杆线虫物种中通过亚功能化而多样化。
大量的物种特异性串联重复和偶尔的基因丢失推动了 F-box 基因家族在秀丽隐杆线虫中的快速进化,导致了复杂的基因结构变异和多样化的功能,影响了秀丽隐杆线虫属内和属间的生长和发育。总之,我们的研究结果概述了秀丽隐杆线虫基因组中 F-box 基因的进化,并为未来的功能研究奠定了基础。