University of California, Riverside, CA92521, USA.
Dev Psychopathol. 2023 Aug;35(3):1171-1187. doi: 10.1017/S0954579421001097. Epub 2021 Dec 13.
Indices of cumulative risk (CR) have long been used in developmental research to encode the number of risk factors a child or adolescent experiences that may impede optimal developmental outcomes. Initial contributions concentrated on indices of cumulative environmental risk; more recently, indices of cumulative genetic risk have been employed. In this article, regression analytic methods are proposed for interrogating strongly the validity of risk indices by testing optimality of compositing weights, enabling more informative modeling of effects of CR indices. Reanalyses of data from two studies are reported. One study involved 10 environmental risk factors predicting Verbal IQ in 215 four-year-old children. The second study included an index of genetic CR in a G×E interaction investigation of 281 target participants assessed at age 15 years and then again at age 31 years for observed hostility during videotaped interactions with close family relations. Principles to guide evaluation of results of statistical modeling are presented, and implications of results for research and theory are discussed. The ultimate goals of this paper are to develop stronger tests of conjectures involving CR indices and to promote methods for improving replicability of results across studies.
累积风险指数(CR)长期以来一直被用于发展研究中,用于编码儿童或青少年经历的可能阻碍最佳发展结果的风险因素的数量。最初的贡献集中在累积环境风险指数上;最近,累积遗传风险指数也被采用。本文提出了回归分析方法,通过测试成分权重的最优性来强烈检验风险指数的有效性,从而能够更有效地对 CR 指数的影响进行建模。报告了对两项研究数据的重新分析。一项研究涉及 10 个环境风险因素,预测了 215 名 4 岁儿童的言语智商。第二项研究在 281 名目标参与者中纳入了遗传 CR 指数,这些参与者在 15 岁时进行了评估,然后在 31 岁时对与亲密家庭关系的视频互动中的观察到的敌意进行了再次评估。本文提出了评估统计建模结果的原则,并讨论了结果对研究和理论的意义。本文的最终目标是开发更严格的 CR 指数假设检验,并促进提高研究间结果可重复性的方法。