Suppr超能文献

利用聚类分析和弗雷明汉 30 年风险评分识别患有心血管代谢疾病风险较高的年轻人。

Identifying young adults at high risk of cardiometabolic disease using cluster analysis and the Framingham 30-yr risk score.

机构信息

Medical School, University of Western Australia, Australia.

Medical School, University of Western Australia, Australia; Telethon Kids Institute, University of Western Australia, Australia.

出版信息

Nutr Metab Cardiovasc Dis. 2022 Feb;32(2):429-435. doi: 10.1016/j.numecd.2021.10.006. Epub 2021 Oct 16.

Abstract

BACKGROUND AND AIMS

Current strategies to reduce cardiovascular disease (CVD) risk in young adults are largely limited to those at extremes of risk. In cohort studies we have shown cluster analysis identified a large sub-group of adolescents with multiple risk factors. This study examined if individuals classified at 'high-risk' by cluster analysis could also be identified by their Framingham risk scores.

METHODS AND RESULTS

Raine Study data at 17- (n = 1048) and 20-years (n = 1120) identified high- and low-risk groups by cluster analysis using continuous measures of systolic BP, BMI, triglycerides and insulin resistance. We assessed:- CVD risk at 20-years using the Framingham 30 yr-risk-score in the high- and low-risk clusters, and cluster stability from adolescence to adulthood. Cluster analysis at 17- and 20-years identified a high-risk group comprising, 17.9% and 21.3%, respectively of the cohort. In contrast, only 1.2% and 3.4%, respectively, met the metabolic syndrome criteria, all of whom were within the high-risk cluster. Compared with the low-risk cluster, Framingham scores of the high-risk cluster were elevated in males (9.4%; 99%CI 8.3, 10.6 vs 6.0%; 99%CI 5.7, 6.2) and females (4.9%; 99%CI 4.4, 5.4 vs 3.2%; 99%CI 3.0, 3.3) (both P < 0.0001). A score >8 for males and >4 for females identified those at high CVD risk with 99% confidence.

CONCLUSION

Cluster analysis using multiple risk factors identified ∼20% of young adults at high CVD risk. Application of our Framingham 30 yr-risk cut-offs to individuals allows identification of more young people with multiple risk factors for CVD than conventional metabolic syndrome criteria.

摘要

背景和目的

目前降低年轻人心血管疾病(CVD)风险的策略主要局限于那些处于风险极端的人群。在队列研究中,我们发现聚类分析确定了一个具有多种危险因素的大型亚组青少年。本研究探讨了通过聚类分析被归类为“高危”的个体是否也可以通过他们的弗雷明汉风险评分来识别。

方法和结果

Raine 研究在 17 岁(n=1048)和 20 岁(n=1120)的数据中,使用连续测量的收缩压、BMI、甘油三酯和胰岛素抵抗,通过聚类分析确定了高风险和低风险组。我们评估了:-使用弗雷明汉 30 年风险评分在高风险和低风险组中的 20 年 CVD 风险,以及从青春期到成年期的聚类稳定性。17 岁和 20 岁的聚类分析分别确定了一个高风险组,占队列的 17.9%和 21.3%。相比之下,只有 1.2%和 3.4%,分别,符合代谢综合征标准,所有这些人都在高风险组内。与低风险组相比,高风险组的弗雷明汉评分在男性中升高(9.4%;99%CI 8.3,10.6 与 6.0%;99%CI 5.7,6.2)和女性(4.9%;99%CI 4.4, 5.4 与 3.2%;99%CI 3.0, 3.3)(均 P<0.0001)。男性得分>8,女性得分>4,可确定 CVD 高风险人群,置信度为 99%。

结论

使用多种危险因素的聚类分析确定了约 20%的 CVD 高风险年轻人。将我们的弗雷明汉 30 年风险截止值应用于个体,可以识别出比传统代谢综合征标准更多的具有 CVD 多种危险因素的年轻人。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验