Suppr超能文献

支持系统评价自动化的工具:范围综述。

Tools to support the automation of systematic reviews: a scoping review.

机构信息

School of Psychology and Public Health, Department of Public Health, La Trobe University, Melbourne Campus, Victoria, Australia.

Faculty of Medicine, Nursing and Health Sciences, Monash University, Wellington Road, Clayton Vic 3168, Australia.

出版信息

J Clin Epidemiol. 2022 Apr;144:22-42. doi: 10.1016/j.jclinepi.2021.12.005. Epub 2021 Dec 8.

Abstract

OBJECTIVE

The objectives of this scoping review are to identify the reliability and validity of the available tools, their limitations and any recommendations to further improve the use of these tools.

STUDY DESIGN

A scoping review methodology was followed to map the literature published on the challenges and solutions of conducting evidence synthesis using the JBI scoping review methodology.

RESULTS

A total of 47 publications were included in the review. The current scoping review identified that LitSuggest, Rayyan, Abstractr, BIBOT, R software, RobotAnalyst, DistillerSR, ExaCT and NetMetaXL have potential to be used for the automation of systematic reviews. However, they are not without limitations. The review also identified other studies that employed algorithms that have not yet been developed into user friendly tools. Some of these algorithms showed high validity and reliability but their use is conditional on user knowledge of computer science and algorithms.

CONCLUSION

Abstract screening has reached maturity; data extraction is still an active area. Developing methods to semi-automate different steps of evidence synthesis via machine learning remains an important research direction. Also, it is important to move from the research prototypes currently available to professionally maintained platforms.

摘要

目的

本次范围综述的目的是确定现有工具的可靠性和有效性,以及它们的局限性,并提出进一步改进这些工具使用的建议。

研究设计

采用范围综述方法,对使用 JBI 范围综述方法进行证据综合的挑战和解决方案的文献进行了综述。

结果

共纳入 47 篇文献。本次范围综述发现,LitSuggest、Rayyan、Abstractr、BIBOT、R 软件、RobotAnalyst、DistillerSR、ExaCT 和 NetMetaXL 具有自动化系统评价的潜力。然而,它们并非没有局限性。该综述还发现了其他使用尚未开发成用户友好工具的算法的研究。其中一些算法具有较高的有效性和可靠性,但它们的使用取决于用户对计算机科学和算法的了解。

结论

摘要筛选已经成熟;数据提取仍然是一个活跃的领域。通过机器学习开发方法对半自动化证据综合的不同步骤仍然是一个重要的研究方向。此外,从目前可用的研究原型向专业维护的平台转移也很重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验