Suppr超能文献

转铁蛋白靶向的非侵入性纳米囊泡使耐药多形性胶质母细胞瘤敏感,并改善原位小鼠模型中的存活。

Non-invasive transferrin targeted nanovesicles sensitize resistant glioblastoma multiforme tumors and improve survival in orthotopic mouse models.

机构信息

Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, India.

Department of Radiation Oncology ACTREC, Tata Memorial Center, Kharghar Navi-Mumbai, India.

出版信息

Nanoscale. 2021 Dec 23;14(1):108-126. doi: 10.1039/d1nr05460k.

Abstract

The blood-brain barrier (BBB) and tumor heterogeneity have resulted in abysmally poor clinical outcomes in glioblastoma (GBM) with the standard therapeutic regimen. Despite several anti-glioma drug delivery strategies, the lack of adequate chemotherapeutic bioavailability in gliomas has led to a suboptimal therapeutic gain in terms of improvement in survival and increased systemic toxicities. This has paved the way for designing highly specific and non-invasive drug delivery approaches for treating GBM. The intranasal (IN) route is one such delivery strategy that has the potential to reach the brain parenchyma by circumventing the BBB. We recently showed that hydrogel embedded with miltefosine (HePc, proapoptotic anti-tumor agent) and temozolomide (TMZ, DNA methylating agent) loaded targeted nanovesicles prevented tumor relapses in orthotopic GBM mouse models. In this study, we specifically investigated the potential of a non-invasive IN route of TMZ delivered from lipid nanovesicles (LNs) decorated with surface transferrin (Tf) and co-encapsulated with HePc to reach the brain by circumventing the BBB in glioma bearing mice. The targeted nanovesicles (228.3 ± 10 nm, -41.7 ± 4 mV) exhibited mucoadhesiveness with 2% w/v mucin suggesting their potential to increase brain drug bioavailability after IN administration. The optimized TLNs had controlled, tunable and significantly different release kinetics in simulated cerebrospinal fluid and simulated nasal fluid demonstrating efficient release of the payload upon reaching the brain. Drug synergy (combination index, 0.7) showed a 6.4-fold enhanced cytotoxicity against resistant U87MG cells compared to free drugs. gamma scintigraphy of Tc labeled LNs showed 500- and 280-fold increased brain concentration post 18 h of treatment. The efficacy of the TLNs increased by 1.8-fold in terms of survival of tumor-bearing mice compared to free drugs. These findings suggested that targeted drug synergy has the potential to intranasally deliver a high therapeutic dose of the chemotherapy agent (TMZ) and could serve as a platform for future clinical application.

摘要

血脑屏障(BBB)和肿瘤异质性导致胶质母细胞瘤(GBM)采用标准治疗方案的临床预后极差。尽管有几种抗神经胶质瘤药物递送策略,但由于胶质瘤中化疗药物的生物利用度不足,导致在提高生存率和增加全身毒性方面的治疗效果不佳。这为设计用于治疗 GBM 的高度特异性和非侵入性药物递送方法铺平了道路。鼻内(IN)途径是一种这样的递送策略,它有可能通过绕过 BBB 到达脑实质。我们最近表明,含有米替福新(HePc,促凋亡抗肿瘤剂)和替莫唑胺(TMZ,DNA 甲基化剂)的水凝胶嵌入负载靶向纳米囊泡(HePc)可防止原位 GBM 小鼠模型中的肿瘤复发。在这项研究中,我们专门研究了用表面转铁蛋白(Tf)修饰的脂质纳米囊泡(LN)递送非侵入性 IN 途径 TMZ 的潜力,该 LN 包封了 HePc,可绕过携带胶质瘤的小鼠的 BBB 到达大脑。靶向纳米囊泡(228.3 ± 10nm,-41.7 ± 4mV)与 2%w/v 粘蛋白具有粘膜粘附性,表明它们在 IN 给药后有可能增加脑内药物生物利用度。优化后的 TLN 在模拟脑脊髓液和模拟鼻液中具有可控、可调且差异显著的释放动力学,表明在到达大脑时有效释放了有效载荷。药物协同作用(组合指数为 0.7)显示,与游离药物相比,对耐药 U87MG 细胞的细胞毒性增强了 6.4 倍。Tc 标记的 LN 的伽马闪烁显像显示,在治疗 18 小时后,脑内浓度增加了 500 倍和 280 倍。与游离药物相比,TLN 治疗荷瘤小鼠的存活率提高了 1.8 倍。这些发现表明,靶向药物协同作用有可能通过鼻内途径递送高治疗剂量的化疗药物(TMZ),并可作为未来临床应用的平台。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验