Suppr超能文献

基于石墨烯的光热电镊子

Graphene-Based Opto-Thermoelectric Tweezers.

作者信息

Wang Xianyou, Yuan Yunqi, Xie Xi, Zhang Yuquan, Min Changjun, Yuan Xiaocong

机构信息

Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.

出版信息

Adv Mater. 2022 Feb;34(8):e2107691. doi: 10.1002/adma.202107691. Epub 2022 Jan 15.

Abstract

Since the discovery of graphene, its excellent physical properties have greatly improved the performance of optoelectronic devices and brought important technological advances to optical research and its applications. Here, graphene is introduced to the field of optical-tweezer technology and demonstrate a new graphene-based opto-thermoelectric tweezer. This technology not only reduces the incident light energy required by two orders of magnitude (compared with traditional optical tweezers), it also brings new advantages such as a much broader working bandwidth and a larger working area compared to those of widely researched gold-film-based opto-thermoelectric tweezers. Compared with gold film, graphene exhibits higher thermal conductivity and higher uniformity and is easier to process. Thus, it is found that even monolayer graphene provides stable trapping for particles in a broad bandwidth and that performance is enhanced as the number of graphene layers increases. Furthermore, parallel trap multiple particles as desired shapes can be easily generated with structured graphene patterns. This work demonstrates the enormous application potential of graphene in optical-tweezer technology and will promote their application to the trapping or concentration of cells and biomolecules as well as to microfluidics and biosensors.

摘要

自石墨烯被发现以来,其优异的物理特性极大地提升了光电器件的性能,并为光学研究及其应用带来了重要的技术进步。在此,将石墨烯引入光镊技术领域,并展示了一种新型的基于石墨烯的光热电动镊子。该技术不仅将所需的入射光能量降低了两个数量级(与传统光镊相比),而且与广泛研究的基于金膜的光热电动镊子相比,还带来了诸如更宽的工作带宽和更大的工作区域等新优势。与金膜相比,石墨烯具有更高的热导率和更高的均匀性,并且更易于加工。因此,发现即使是单层石墨烯也能在很宽的带宽内为粒子提供稳定的捕获,并且随着石墨烯层数的增加性能会增强。此外,利用结构化的石墨烯图案可以轻松地按所需形状并行捕获多个粒子。这项工作展示了石墨烯在光镊技术中的巨大应用潜力,并将推动其在细胞和生物分子的捕获或浓缩以及微流体和生物传感器方面的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验